ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idmhm Unicode version

Theorem idmhm 12721
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
Hypothesis
Ref Expression
idmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
idmhm  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )

Proof of Theorem idmhm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
2 f1oi 5491 . . . 4  |-  (  _I  |`  B ) : B -1-1-onto-> B
3 f1of 5453 . . . 4  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
42, 3mp1i 10 . . 3  |-  ( M  e.  Mnd  ->  (  _I  |`  B ) : B --> B )
5 idmhm.b . . . . . . . 8  |-  B  =  ( Base `  M
)
6 eqid 2175 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
75, 6mndcl 12688 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  M ) b )  e.  B )
873expb 1204 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  M
) b )  e.  B )
9 fvresi 5701 . . . . . 6  |-  ( ( a ( +g  `  M
) b )  e.  B  ->  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M
) b ) )
108, 9syl 14 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M ) b ) )
11 fvresi 5701 . . . . . . 7  |-  ( a  e.  B  ->  (
(  _I  |`  B ) `
 a )  =  a )
12 fvresi 5701 . . . . . . 7  |-  ( b  e.  B  ->  (
(  _I  |`  B ) `
 b )  =  b )
1311, 12oveqan12d 5884 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  =  ( a ( +g  `  M
) b ) )
1413adantl 277 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) )  =  ( a ( +g  `  M ) b ) )
1510, 14eqtr4d 2211 . . . 4  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) ) )
1615ralrimivva 2557 . . 3  |-  ( M  e.  Mnd  ->  A. a  e.  B  A. b  e.  B  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) ) )
17 eqid 2175 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
185, 17mndidcl 12695 . . . 4  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
19 fvresi 5701 . . . 4  |-  ( ( 0g `  M )  e.  B  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
2018, 19syl 14 . . 3  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
214, 16, 203jca 1177 . 2  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) )
225, 5, 6, 6, 17, 17ismhm 12714 . 2  |-  ( (  _I  |`  B )  e.  ( M MndHom  M )  <-> 
( ( M  e. 
Mnd  /\  M  e.  Mnd )  /\  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) ) )
231, 1, 21, 22syl21anbrc 1182 1  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453    _I cid 4282    |` cres 4622   -->wf 5204   -1-1-onto->wf1o 5207   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491   0gc0g 12625   Mndcmnd 12681   MndHom cmhm 12710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682  df-mhm 12712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator