ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idmhm Unicode version

Theorem idmhm 13502
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
Hypothesis
Ref Expression
idmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
idmhm  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )

Proof of Theorem idmhm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
2 f1oi 5611 . . . 4  |-  (  _I  |`  B ) : B -1-1-onto-> B
3 f1of 5572 . . . 4  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
42, 3mp1i 10 . . 3  |-  ( M  e.  Mnd  ->  (  _I  |`  B ) : B --> B )
5 idmhm.b . . . . . . . 8  |-  B  =  ( Base `  M
)
6 eqid 2229 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
75, 6mndcl 13456 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  M ) b )  e.  B )
873expb 1228 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  M
) b )  e.  B )
9 fvresi 5832 . . . . . 6  |-  ( ( a ( +g  `  M
) b )  e.  B  ->  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M
) b ) )
108, 9syl 14 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M ) b ) )
11 fvresi 5832 . . . . . . 7  |-  ( a  e.  B  ->  (
(  _I  |`  B ) `
 a )  =  a )
12 fvresi 5832 . . . . . . 7  |-  ( b  e.  B  ->  (
(  _I  |`  B ) `
 b )  =  b )
1311, 12oveqan12d 6020 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  =  ( a ( +g  `  M
) b ) )
1413adantl 277 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) )  =  ( a ( +g  `  M ) b ) )
1510, 14eqtr4d 2265 . . . 4  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) ) )
1615ralrimivva 2612 . . 3  |-  ( M  e.  Mnd  ->  A. a  e.  B  A. b  e.  B  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) ) )
17 eqid 2229 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
185, 17mndidcl 13463 . . . 4  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
19 fvresi 5832 . . . 4  |-  ( ( 0g `  M )  e.  B  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
2018, 19syl 14 . . 3  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
214, 16, 203jca 1201 . 2  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) )
225, 5, 6, 6, 17, 17ismhm 13494 . 2  |-  ( (  _I  |`  B )  e.  ( M MndHom  M )  <-> 
( ( M  e. 
Mnd  /\  M  e.  Mnd )  /\  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) ) )
231, 1, 21, 22syl21anbrc 1206 1  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    _I cid 4379    |` cres 4721   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Mndcmnd 13449   MndHom cmhm 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-mhm 13492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator