Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > idmhm | Unicode version |
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.) |
Ref | Expression |
---|---|
idmhm.b |
Ref | Expression |
---|---|
idmhm | MndHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | f1oi 5483 | . . . 4 | |
3 | f1of 5445 | . . . 4 | |
4 | 2, 3 | mp1i 10 | . . 3 |
5 | idmhm.b | . . . . . . . 8 | |
6 | eqid 2171 | . . . . . . . 8 | |
7 | 5, 6 | mndcl 12663 | . . . . . . 7 |
8 | 7 | 3expb 1200 | . . . . . 6 |
9 | fvresi 5693 | . . . . . 6 | |
10 | 8, 9 | syl 14 | . . . . 5 |
11 | fvresi 5693 | . . . . . . 7 | |
12 | fvresi 5693 | . . . . . . 7 | |
13 | 11, 12 | oveqan12d 5876 | . . . . . 6 |
14 | 13 | adantl 275 | . . . . 5 |
15 | 10, 14 | eqtr4d 2207 | . . . 4 |
16 | 15 | ralrimivva 2553 | . . 3 |
17 | eqid 2171 | . . . . 5 | |
18 | 5, 17 | mndidcl 12670 | . . . 4 |
19 | fvresi 5693 | . . . 4 | |
20 | 18, 19 | syl 14 | . . 3 |
21 | 4, 16, 20 | 3jca 1173 | . 2 |
22 | 5, 5, 6, 6, 17, 17 | ismhm 12689 | . 2 MndHom |
23 | 1, 1, 21, 22 | syl21anbrc 1178 | 1 MndHom |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 974 wceq 1349 wcel 2142 wral 2449 cid 4274 cres 4614 wf 5196 wf1o 5199 cfv 5200 (class class class)co 5857 cbs 12420 cplusg 12484 c0g 12600 cmnd 12656 MndHom cmhm 12685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-map 6632 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12602 df-mgm 12614 df-sgrp 12647 df-mnd 12657 df-mhm 12687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |