ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idmhm Unicode version

Theorem idmhm 12936
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
Hypothesis
Ref Expression
idmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
idmhm  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )

Proof of Theorem idmhm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
2 f1oi 5518 . . . 4  |-  (  _I  |`  B ) : B -1-1-onto-> B
3 f1of 5480 . . . 4  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
42, 3mp1i 10 . . 3  |-  ( M  e.  Mnd  ->  (  _I  |`  B ) : B --> B )
5 idmhm.b . . . . . . . 8  |-  B  =  ( Base `  M
)
6 eqid 2189 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
75, 6mndcl 12899 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  M ) b )  e.  B )
873expb 1206 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  M
) b )  e.  B )
9 fvresi 5730 . . . . . 6  |-  ( ( a ( +g  `  M
) b )  e.  B  ->  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M
) b ) )
108, 9syl 14 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M ) b ) )
11 fvresi 5730 . . . . . . 7  |-  ( a  e.  B  ->  (
(  _I  |`  B ) `
 a )  =  a )
12 fvresi 5730 . . . . . . 7  |-  ( b  e.  B  ->  (
(  _I  |`  B ) `
 b )  =  b )
1311, 12oveqan12d 5916 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  =  ( a ( +g  `  M
) b ) )
1413adantl 277 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) )  =  ( a ( +g  `  M ) b ) )
1510, 14eqtr4d 2225 . . . 4  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) ) )
1615ralrimivva 2572 . . 3  |-  ( M  e.  Mnd  ->  A. a  e.  B  A. b  e.  B  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) ) )
17 eqid 2189 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
185, 17mndidcl 12906 . . . 4  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
19 fvresi 5730 . . . 4  |-  ( ( 0g `  M )  e.  B  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
2018, 19syl 14 . . 3  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
214, 16, 203jca 1179 . 2  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) )
225, 5, 6, 6, 17, 17ismhm 12928 . 2  |-  ( (  _I  |`  B )  e.  ( M MndHom  M )  <-> 
( ( M  e. 
Mnd  /\  M  e.  Mnd )  /\  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) ) )
231, 1, 21, 22syl21anbrc 1184 1  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468    _I cid 4306    |` cres 4646   -->wf 5231   -1-1-onto->wf1o 5234   ` cfv 5235  (class class class)co 5897   Basecbs 12515   +g cplusg 12592   0gc0g 12764   Mndcmnd 12892   MndHom cmhm 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-map 6677  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-mhm 12926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator