ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idmhm Unicode version

Theorem idmhm 13171
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
Hypothesis
Ref Expression
idmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
idmhm  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )

Proof of Theorem idmhm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
2 f1oi 5545 . . . 4  |-  (  _I  |`  B ) : B -1-1-onto-> B
3 f1of 5507 . . . 4  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
42, 3mp1i 10 . . 3  |-  ( M  e.  Mnd  ->  (  _I  |`  B ) : B --> B )
5 idmhm.b . . . . . . . 8  |-  B  =  ( Base `  M
)
6 eqid 2196 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
75, 6mndcl 13125 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  M ) b )  e.  B )
873expb 1206 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  M
) b )  e.  B )
9 fvresi 5758 . . . . . 6  |-  ( ( a ( +g  `  M
) b )  e.  B  ->  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M
) b ) )
108, 9syl 14 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M ) b ) )
11 fvresi 5758 . . . . . . 7  |-  ( a  e.  B  ->  (
(  _I  |`  B ) `
 a )  =  a )
12 fvresi 5758 . . . . . . 7  |-  ( b  e.  B  ->  (
(  _I  |`  B ) `
 b )  =  b )
1311, 12oveqan12d 5944 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  =  ( a ( +g  `  M
) b ) )
1413adantl 277 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) )  =  ( a ( +g  `  M ) b ) )
1510, 14eqtr4d 2232 . . . 4  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) ) )
1615ralrimivva 2579 . . 3  |-  ( M  e.  Mnd  ->  A. a  e.  B  A. b  e.  B  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) ) )
17 eqid 2196 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
185, 17mndidcl 13132 . . . 4  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
19 fvresi 5758 . . . 4  |-  ( ( 0g `  M )  e.  B  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
2018, 19syl 14 . . 3  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
214, 16, 203jca 1179 . 2  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) )
225, 5, 6, 6, 17, 17ismhm 13163 . 2  |-  ( (  _I  |`  B )  e.  ( M MndHom  M )  <-> 
( ( M  e. 
Mnd  /\  M  e.  Mnd )  /\  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) ) )
231, 1, 21, 22syl21anbrc 1184 1  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    _I cid 4324    |` cres 4666   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   0gc0g 12958   Mndcmnd 13118   MndHom cmhm 13159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator