ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idmhm Unicode version

Theorem idmhm 12696
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
Hypothesis
Ref Expression
idmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
idmhm  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )

Proof of Theorem idmhm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
2 f1oi 5483 . . . 4  |-  (  _I  |`  B ) : B -1-1-onto-> B
3 f1of 5445 . . . 4  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
42, 3mp1i 10 . . 3  |-  ( M  e.  Mnd  ->  (  _I  |`  B ) : B --> B )
5 idmhm.b . . . . . . . 8  |-  B  =  ( Base `  M
)
6 eqid 2171 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
75, 6mndcl 12663 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  M ) b )  e.  B )
873expb 1200 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  M
) b )  e.  B )
9 fvresi 5693 . . . . . 6  |-  ( ( a ( +g  `  M
) b )  e.  B  ->  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M
) b ) )
108, 9syl 14 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( a ( +g  `  M ) b ) )
11 fvresi 5693 . . . . . . 7  |-  ( a  e.  B  ->  (
(  _I  |`  B ) `
 a )  =  a )
12 fvresi 5693 . . . . . . 7  |-  ( b  e.  B  ->  (
(  _I  |`  B ) `
 b )  =  b )
1311, 12oveqan12d 5876 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  =  ( a ( +g  `  M
) b ) )
1413adantl 275 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) )  =  ( a ( +g  `  M ) b ) )
1510, 14eqtr4d 2207 . . . 4  |-  ( ( M  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) ) )
1615ralrimivva 2553 . . 3  |-  ( M  e.  Mnd  ->  A. a  e.  B  A. b  e.  B  ( (  _I  |`  B ) `  ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `
 a ) ( +g  `  M ) ( (  _I  |`  B ) `
 b ) ) )
17 eqid 2171 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
185, 17mndidcl 12670 . . . 4  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
19 fvresi 5693 . . . 4  |-  ( ( 0g `  M )  e.  B  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
2018, 19syl 14 . . 3  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) )
214, 16, 203jca 1173 . 2  |-  ( M  e.  Mnd  ->  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) )
225, 5, 6, 6, 17, 17ismhm 12689 . 2  |-  ( (  _I  |`  B )  e.  ( M MndHom  M )  <-> 
( ( M  e. 
Mnd  /\  M  e.  Mnd )  /\  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  M ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  M
) ( (  _I  |`  B ) `  b
) )  /\  (
(  _I  |`  B ) `
 ( 0g `  M ) )  =  ( 0g `  M
) ) ) )
231, 1, 21, 22syl21anbrc 1178 1  |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 974    = wceq 1349    e. wcel 2142   A.wral 2449    _I cid 4274    |` cres 4614   -->wf 5196   -1-1-onto->wf1o 5199   ` cfv 5200  (class class class)co 5857   Basecbs 12420   +g cplusg 12484   0gc0g 12600   Mndcmnd 12656   MndHom cmhm 12685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-cnex 7869  ax-resscn 7870  ax-1re 7872  ax-addrcl 7875
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-map 6632  df-inn 8883  df-2 8941  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12602  df-mgm 12614  df-sgrp 12647  df-mnd 12657  df-mhm 12687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator