ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmfmhm Unicode version

Theorem mhmfmhm 12986
Description: The function fulfilling the conditions of mhmmnd 12985 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
ghmgrp.x  |-  X  =  ( Base `  G
)
ghmgrp.y  |-  Y  =  ( Base `  H
)
ghmgrp.p  |-  .+  =  ( +g  `  G )
ghmgrp.q  |-  .+^  =  ( +g  `  H )
ghmgrp.1  |-  ( ph  ->  F : X -onto-> Y
)
mhmmnd.3  |-  ( ph  ->  G  e.  Mnd )
Assertion
Ref Expression
mhmfmhm  |-  ( ph  ->  F  e.  ( G MndHom  H ) )
Distinct variable groups:    x, F, y   
x, G, y    x,  .+ , y    x, H, y   
x, X, y    x, Y, y    x,  .+^ , y    ph, x, y

Proof of Theorem mhmfmhm
StepHypRef Expression
1 mhmmnd.3 . 2  |-  ( ph  ->  G  e.  Mnd )
2 ghmgrp.f . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
3 ghmgrp.x . . 3  |-  X  =  ( Base `  G
)
4 ghmgrp.y . . 3  |-  Y  =  ( Base `  H
)
5 ghmgrp.p . . 3  |-  .+  =  ( +g  `  G )
6 ghmgrp.q . . 3  |-  .+^  =  ( +g  `  H )
7 ghmgrp.1 . . 3  |-  ( ph  ->  F : X -onto-> Y
)
82, 3, 4, 5, 6, 7, 1mhmmnd 12985 . 2  |-  ( ph  ->  H  e.  Mnd )
9 fof 5440 . . . 4  |-  ( F : X -onto-> Y  ->  F : X --> Y )
107, 9syl 14 . . 3  |-  ( ph  ->  F : X --> Y )
1123expb 1204 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
1211ralrimivva 2559 . . 3  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) ) )
13 eqid 2177 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
142, 3, 4, 5, 6, 7, 1, 13mhmid 12984 . . 3  |-  ( ph  ->  ( F `  ( 0g `  G ) )  =  ( 0g `  H ) )
1510, 12, 143jca 1177 . 2  |-  ( ph  ->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) )  /\  ( F `  ( 0g
`  G ) )  =  ( 0g `  H ) ) )
16 eqid 2177 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
173, 4, 5, 6, 13, 16ismhm 12858 . 2  |-  ( F  e.  ( G MndHom  H
)  <->  ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  ( 0g `  G ) )  =  ( 0g
`  H ) ) ) )
181, 8, 15, 17syl21anbrc 1182 1  |-  ( ph  ->  F  e.  ( G MndHom  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   -->wf 5214   -onto->wfo 5216   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   0gc0g 12710   Mndcmnd 12822   MndHom cmhm 12854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-mhm 12856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator