Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mhmfmhm | Unicode version |
Description: The function fulfilling the conditions of mhmmnd 12831 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
ghmgrp.f | |
ghmgrp.x | |
ghmgrp.y | |
ghmgrp.p | |
ghmgrp.q | |
ghmgrp.1 | |
mhmmnd.3 |
Ref | Expression |
---|---|
mhmfmhm | MndHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmmnd.3 | . 2 | |
2 | ghmgrp.f | . . 3 | |
3 | ghmgrp.x | . . 3 | |
4 | ghmgrp.y | . . 3 | |
5 | ghmgrp.p | . . 3 | |
6 | ghmgrp.q | . . 3 | |
7 | ghmgrp.1 | . . 3 | |
8 | 2, 3, 4, 5, 6, 7, 1 | mhmmnd 12831 | . 2 |
9 | fof 5422 | . . . 4 | |
10 | 7, 9 | syl 14 | . . 3 |
11 | 2 | 3expb 1200 | . . . 4 |
12 | 11 | ralrimivva 2553 | . . 3 |
13 | eqid 2171 | . . . 4 | |
14 | 2, 3, 4, 5, 6, 7, 1, 13 | mhmid 12830 | . . 3 |
15 | 10, 12, 14 | 3jca 1173 | . 2 |
16 | eqid 2171 | . . 3 | |
17 | 3, 4, 5, 6, 13, 16 | ismhm 12707 | . 2 MndHom |
18 | 1, 8, 15, 17 | syl21anbrc 1178 | 1 MndHom |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 974 wceq 1349 wcel 2142 wral 2449 wf 5196 wfo 5198 cfv 5200 (class class class)co 5857 cbs 12420 cplusg 12484 c0g 12618 cmnd 12674 MndHom cmhm 12703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-fo 5206 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-map 6632 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-mhm 12705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |