ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg2 Unicode version

Theorem issubrg2 13300
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b  |-  B  =  ( Base `  R
)
issubrg2.o  |-  .1.  =  ( 1r `  R )
issubrg2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
issubrg2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Distinct variable groups:    x, y, A   
x, R, y    x,  .x. , y
Allowed substitution hints:    B( x, y)    .1. ( x, y)

Proof of Theorem issubrg2
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13286 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
2 issubrg2.o . . . 4  |-  .1.  =  ( 1r `  R )
32subrg1cl 13288 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  .1.  e.  A )
4 issubrg2.t . . . . . 6  |-  .x.  =  ( .r `  R )
54subrgmcl 13292 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  A  /\  y  e.  A
)  ->  ( x  .x.  y )  e.  A
)
653expb 1204 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  .x.  y
)  e.  A )
76ralrimivva 2559 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
81, 3, 73jca 1177 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )
9 simpl 109 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  R  e.  Ring )
10 simpr1 1003 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubGrp `  R )
)
11 eqid 2177 . . . . . . 7  |-  ( Rs  A )  =  ( Rs  A )
1211subgbas 12969 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
1310, 12syl 14 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  =  ( Base `  ( Rs  A ) ) )
14 eqidd 2178 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  =  ( Rs  A ) )
15 eqidd 2178 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
16 id 19 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  A  e.  (SubGrp `  R ) )
17 subgrcl 12970 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  R  e.  Grp )
1814, 15, 16, 17ressplusgd 12579 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
1910, 18syl 14 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
2011, 4ressmulrg 12595 . . . . . 6  |-  ( ( A  e.  (SubGrp `  R )  /\  R  e.  Grp )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
2110, 17, 20syl2anc2 412 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
2211subggrp 12968 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  e.  Grp )
2310, 22syl 14 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Grp )
24 simpr3 1005 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
25 oveq1 5879 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  .x.  y )  =  ( u  .x.  y ) )
2625eleq1d 2246 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  .x.  y
)  e.  A  <->  ( u  .x.  y )  e.  A
) )
27 oveq2 5880 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  .x.  y )  =  ( u  .x.  v ) )
2827eleq1d 2246 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  .x.  y
)  e.  A  <->  ( u  .x.  v )  e.  A
) )
2926, 28rspc2v 2854 . . . . . . 7  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A  ->  ( u  .x.  v
)  e.  A ) )
3024, 29syl5com 29 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( u  .x.  v )  e.  A
) )
31303impib 1201 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A  /\  v  e.  A )  ->  (
u  .x.  v )  e.  A )
32 issubrg2.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
3332subgss 12965 . . . . . . . . . 10  |-  ( A  e.  (SubGrp `  R
)  ->  A  C_  B
)
3410, 33syl 14 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  C_  B )
3534sseld 3154 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
u  e.  A  ->  u  e.  B )
)
3634sseld 3154 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
v  e.  A  -> 
v  e.  B ) )
3734sseld 3154 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
w  e.  A  ->  w  e.  B )
)
3835, 36, 373anim123d 1319 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3938imp 124 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )
4032, 4ringass 13130 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4140adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4239, 41syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
43 eqid 2177 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
4432, 43, 4ringdi 13132 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4544adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4639, 45syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4732, 43, 4ringdir 13133 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4847adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4939, 48syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
50 simpr2 1004 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .1.  e.  A )
5135imp 124 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  u  e.  B )
5232, 4, 2ringlidm 13137 . . . . . . 7  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
5352adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
5451, 53syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (  .1.  .x.  u )  =  u )
5532, 4, 2ringridm 13138 . . . . . . 7  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5655adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5751, 56syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (
u  .x.  .1.  )  =  u )
5813, 19, 21, 23, 31, 42, 46, 49, 50, 54, 57isringd 13151 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Ring )
5934, 50jca 306 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( A  C_  B  /\  .1.  e.  A ) )
6032, 2issubrg 13280 . . . 4  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
619, 58, 59, 60syl21anbrc 1182 . . 3  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubRing `  R )
)
6261ex 115 . 2  |-  ( R  e.  Ring  ->  ( ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)  ->  A  e.  (SubRing `  R ) ) )
638, 62impbid2 143 1  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3129   ` cfv 5215  (class class class)co 5872   Basecbs 12454   ↾s cress 12455   +g cplusg 12528   .rcmulr 12529   Grpcgrp 12809  SubGrpcsubg 12958   1rcur 13073   Ringcrg 13110  SubRingcsubrg 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-pre-ltirr 7920  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-ltxr 7993  df-inn 8916  df-2 8974  df-3 8975  df-ndx 12457  df-slot 12458  df-base 12460  df-sets 12461  df-iress 12462  df-plusg 12541  df-mulr 12542  df-0g 12695  df-mgm 12707  df-sgrp 12740  df-mnd 12750  df-subg 12961  df-mgp 13062  df-ur 13074  df-ring 13112  df-subrg 13278
This theorem is referenced by:  subrgintm  13302  issubrg3  13306  cnsubrglem  13343
  Copyright terms: Public domain W3C validator