ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg2 Unicode version

Theorem issubrg2 14003
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b  |-  B  =  ( Base `  R
)
issubrg2.o  |-  .1.  =  ( 1r `  R )
issubrg2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
issubrg2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Distinct variable groups:    x, y, A   
x, R, y    x,  .x. , y
Allowed substitution hints:    B( x, y)    .1. ( x, y)

Proof of Theorem issubrg2
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13989 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
2 issubrg2.o . . . 4  |-  .1.  =  ( 1r `  R )
32subrg1cl 13991 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  .1.  e.  A )
4 issubrg2.t . . . . . 6  |-  .x.  =  ( .r `  R )
54subrgmcl 13995 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  A  /\  y  e.  A
)  ->  ( x  .x.  y )  e.  A
)
653expb 1207 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  .x.  y
)  e.  A )
76ralrimivva 2588 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
81, 3, 73jca 1180 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )
9 simpl 109 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  R  e.  Ring )
10 simpr1 1006 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubGrp `  R )
)
11 eqid 2205 . . . . . . 7  |-  ( Rs  A )  =  ( Rs  A )
1211subgbas 13514 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
1310, 12syl 14 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  =  ( Base `  ( Rs  A ) ) )
14 eqidd 2206 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  =  ( Rs  A ) )
15 eqidd 2206 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
16 id 19 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  A  e.  (SubGrp `  R ) )
17 subgrcl 13515 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  R  e.  Grp )
1814, 15, 16, 17ressplusgd 12961 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
1910, 18syl 14 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
2011, 4ressmulrg 12977 . . . . . 6  |-  ( ( A  e.  (SubGrp `  R )  /\  R  e.  Grp )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
2110, 17, 20syl2anc2 412 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
2211subggrp 13513 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  e.  Grp )
2310, 22syl 14 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Grp )
24 simpr3 1008 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
25 oveq1 5951 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  .x.  y )  =  ( u  .x.  y ) )
2625eleq1d 2274 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  .x.  y
)  e.  A  <->  ( u  .x.  y )  e.  A
) )
27 oveq2 5952 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  .x.  y )  =  ( u  .x.  v ) )
2827eleq1d 2274 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  .x.  y
)  e.  A  <->  ( u  .x.  v )  e.  A
) )
2926, 28rspc2v 2890 . . . . . . 7  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A  ->  ( u  .x.  v
)  e.  A ) )
3024, 29syl5com 29 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( u  .x.  v )  e.  A
) )
31303impib 1204 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A  /\  v  e.  A )  ->  (
u  .x.  v )  e.  A )
32 issubrg2.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
3332subgss 13510 . . . . . . . . . 10  |-  ( A  e.  (SubGrp `  R
)  ->  A  C_  B
)
3410, 33syl 14 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  C_  B )
3534sseld 3192 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
u  e.  A  ->  u  e.  B )
)
3634sseld 3192 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
v  e.  A  -> 
v  e.  B ) )
3734sseld 3192 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
w  e.  A  ->  w  e.  B )
)
3835, 36, 373anim123d 1332 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3938imp 124 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )
4032, 4ringass 13778 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4140adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4239, 41syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
43 eqid 2205 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
4432, 43, 4ringdi 13780 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4544adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4639, 45syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4732, 43, 4ringdir 13781 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4847adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4939, 48syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
50 simpr2 1007 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .1.  e.  A )
5135imp 124 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  u  e.  B )
5232, 4, 2ringlidm 13785 . . . . . . 7  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
5352adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
5451, 53syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (  .1.  .x.  u )  =  u )
5532, 4, 2ringridm 13786 . . . . . . 7  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5655adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5751, 56syldan 282 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (
u  .x.  .1.  )  =  u )
5813, 19, 21, 23, 31, 42, 46, 49, 50, 54, 57isringd 13803 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Ring )
5934, 50jca 306 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( A  C_  B  /\  .1.  e.  A ) )
6032, 2issubrg 13983 . . . 4  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
619, 58, 59, 60syl21anbrc 1185 . . 3  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubRing `  R )
)
6261ex 115 . 2  |-  ( R  e.  Ring  ->  ( ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)  ->  A  e.  (SubRing `  R ) ) )
638, 62impbid2 143 1  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   .rcmulr 12910   Grpcgrp 13332  SubGrpcsubg 13503   1rcur 13721   Ringcrg 13758  SubRingcsubrg 13979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-subg 13506  df-mgp 13683  df-ur 13722  df-ring 13760  df-subrg 13981
This theorem is referenced by:  subrgintm  14005  issubrg3  14009  issubrgd  14214  cnsubrglem  14342
  Copyright terms: Public domain W3C validator