ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2anbr Unicode version

Theorem syl2anbr 290
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1  |-  ( ps  <->  ph )
syl2anbr.2  |-  ( ch  <->  ta )
syl2anbr.3  |-  ( ( ps  /\  ch )  ->  th )
Assertion
Ref Expression
syl2anbr  |-  ( (
ph  /\  ta )  ->  th )

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2  |-  ( ch  <->  ta )
2 syl2anbr.1 . . 3  |-  ( ps  <->  ph )
3 syl2anbr.3 . . 3  |-  ( ( ps  /\  ch )  ->  th )
42, 3sylanbr 283 . 2  |-  ( (
ph  /\  ch )  ->  th )
51, 4sylan2br 286 1  |-  ( (
ph  /\  ta )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylancbr  417  tz6.12  5524  ltresr  7801  divmuldivap  8629  fnn0ind  9328  rexanuz  10952  nprmi  12078  cncfval  13353
  Copyright terms: Public domain W3C validator