![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan2br | Unicode version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2br.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylan2br.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan2br |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2br.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylan2br.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan2 281 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anbr 287 xordc1 1330 imainss 4860 xpexr2m 4885 funeu2 5054 imadiflem 5106 fnop 5130 ssimaex 5378 isosolem 5617 acexmidlem2 5663 fnovex 5696 cnvoprab 6013 smores3 6072 freccllem 6181 riinerm 6379 enq0sym 7052 peano5nnnn 7488 axcaucvglemres 7495 uzind3 8920 xrltnsym 9324 0fz1 9520 iseqfcl 9939 iseqfclt 9940 seqf 9941 seq3f1oleml 9993 exp1 10022 expp1 10023 resqrexlemf1 10502 resqrexlemfp1 10503 clim2ser 10786 clim2ser2 10787 iisermulc2 10789 isermulc2 10790 isummolem3 10831 isum 10837 fisumss 10845 fsum3cvg3 10850 isumclim 10876 iserabs 10930 isumshft 10945 isumsplit 10946 geoisum1 10974 geoisum1c 10975 cvgratnnlemnexp 10979 cvgratz 10987 mertenslem2 10991 effsumlt 11043 efgt1p 11047 gcd0id 11309 lcmgcd 11399 lcmdvds 11400 lcmid 11401 isprm2lem 11437 |
Copyright terms: Public domain | W3C validator |