| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2br | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2br.1 |
|
| sylan2br.2 |
|
| Ref | Expression |
|---|---|
| sylan2br |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2br.1 |
. . 3
| |
| 2 | 1 | biimpri 133 |
. 2
|
| 3 | sylan2br.2 |
. 2
| |
| 4 | 2, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 xordc1 1413 exmid1stab 4253 imainss 5099 xpexr2m 5125 funeu2 5298 imadiflem 5354 fnop 5380 ssimaex 5642 isosolem 5895 acexmidlem2 5943 fnovex 5979 cnvoprab 6322 smores3 6381 freccllem 6490 riinerm 6697 pw1fin 7009 enq0sym 7547 peano5nnnn 8007 axcaucvglemres 8014 uzind3 9488 xrltnsym 9917 xsubge0 10005 0fz1 10169 seqf 10611 seq3f1oleml 10663 exp1 10692 expp1 10693 resqrexlemf1 11352 resqrexlemfp1 11353 clim2ser 11681 clim2ser2 11682 isermulc2 11684 summodclem3 11724 fisumss 11736 fsum3cvg3 11740 iserabs 11819 isumshft 11834 isumsplit 11835 geoisum1 11863 geoisum1c 11864 cvgratnnlemnexp 11868 cvgratz 11876 mertenslem2 11880 clim2prod 11883 clim2divap 11884 fprodseq 11927 prodssdc 11933 fprodssdc 11934 effsumlt 12036 efgt1p 12040 gcd0id 12333 nninfctlemfo 12394 lcmgcd 12433 lcmdvds 12434 lcmid 12435 isprm2lem 12471 pcmpt 12699 ennnfonelemjn 12806 issgrpd 13277 mulg1 13498 srglmhm 13788 srgrmhm 13789 ringlghm 13856 ringrghm 13857 neipsm 14659 xmetpsmet 14874 comet 15004 metrest 15011 expcncf 15114 lgscllem 15517 lgsdir2 15543 lgsdirnn0 15557 lgsdinn0 15558 cvgcmp2nlemabs 16008 nconstwlpolem 16041 |
| Copyright terms: Public domain | W3C validator |