![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan2br | Unicode version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2br.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylan2br.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan2br |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2br.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 133 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylan2br.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan2 286 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl2anbr 292 xordc1 1404 exmid1stab 4238 imainss 5082 xpexr2m 5108 funeu2 5281 imadiflem 5334 fnop 5358 ssimaex 5619 isosolem 5868 acexmidlem2 5916 fnovex 5952 cnvoprab 6289 smores3 6348 freccllem 6457 riinerm 6664 pw1fin 6968 enq0sym 7494 peano5nnnn 7954 axcaucvglemres 7961 uzind3 9433 xrltnsym 9862 xsubge0 9950 0fz1 10114 seqf 10538 seq3f1oleml 10590 exp1 10619 expp1 10620 resqrexlemf1 11155 resqrexlemfp1 11156 clim2ser 11483 clim2ser2 11484 isermulc2 11486 summodclem3 11526 fisumss 11538 fsum3cvg3 11542 iserabs 11621 isumshft 11636 isumsplit 11637 geoisum1 11665 geoisum1c 11666 cvgratnnlemnexp 11670 cvgratz 11678 mertenslem2 11682 clim2prod 11685 clim2divap 11686 fprodseq 11729 prodssdc 11735 fprodssdc 11736 effsumlt 11838 efgt1p 11842 gcd0id 12119 nninfctlemfo 12180 lcmgcd 12219 lcmdvds 12220 lcmid 12221 isprm2lem 12257 pcmpt 12484 ennnfonelemjn 12562 issgrpd 12998 mulg1 13202 srglmhm 13492 srgrmhm 13493 ringlghm 13560 ringrghm 13561 neipsm 14333 xmetpsmet 14548 comet 14678 metrest 14685 expcncf 14788 lgscllem 15164 lgsdir2 15190 lgsdirnn0 15204 lgsdinn0 15205 cvgcmp2nlemabs 15592 nconstwlpolem 15625 |
Copyright terms: Public domain | W3C validator |