![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan2br | Unicode version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2br.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylan2br.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan2br |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2br.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 133 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylan2br.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan2 286 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl2anbr 292 xordc1 1404 exmid1stab 4237 imainss 5081 xpexr2m 5107 funeu2 5280 imadiflem 5333 fnop 5357 ssimaex 5618 isosolem 5867 acexmidlem2 5915 fnovex 5951 cnvoprab 6287 smores3 6346 freccllem 6455 riinerm 6662 pw1fin 6966 enq0sym 7492 peano5nnnn 7952 axcaucvglemres 7959 uzind3 9430 xrltnsym 9859 xsubge0 9947 0fz1 10111 seqf 10535 seq3f1oleml 10587 exp1 10616 expp1 10617 resqrexlemf1 11152 resqrexlemfp1 11153 clim2ser 11480 clim2ser2 11481 isermulc2 11483 summodclem3 11523 fisumss 11535 fsum3cvg3 11539 iserabs 11618 isumshft 11633 isumsplit 11634 geoisum1 11662 geoisum1c 11663 cvgratnnlemnexp 11667 cvgratz 11675 mertenslem2 11679 clim2prod 11682 clim2divap 11683 fprodseq 11726 prodssdc 11732 fprodssdc 11733 effsumlt 11835 efgt1p 11839 gcd0id 12116 nninfctlemfo 12177 lcmgcd 12216 lcmdvds 12217 lcmid 12218 isprm2lem 12254 pcmpt 12481 ennnfonelemjn 12559 issgrpd 12995 mulg1 13199 srglmhm 13489 srgrmhm 13490 ringlghm 13557 ringrghm 13558 neipsm 14322 xmetpsmet 14537 comet 14667 metrest 14674 expcncf 14763 lgscllem 15123 lgsdir2 15149 lgsdirnn0 15163 lgsdinn0 15164 cvgcmp2nlemabs 15522 nconstwlpolem 15555 |
Copyright terms: Public domain | W3C validator |