| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2br | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2br.1 |
|
| sylan2br.2 |
|
| Ref | Expression |
|---|---|
| sylan2br |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2br.1 |
. . 3
| |
| 2 | 1 | biimpri 133 |
. 2
|
| 3 | sylan2br.2 |
. 2
| |
| 4 | 2, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 xordc1 1435 exmid1stab 4292 imainss 5144 xpexr2m 5170 funeu2 5344 imadiflem 5400 fnop 5426 ssimaex 5695 isosolem 5948 acexmidlem2 5998 fnovex 6034 cnvoprab 6380 smores3 6439 freccllem 6548 riinerm 6755 pw1fin 7072 enq0sym 7619 peano5nnnn 8079 axcaucvglemres 8086 uzind3 9560 xrltnsym 9989 xsubge0 10077 0fz1 10241 seqf 10686 seq3f1oleml 10738 exp1 10767 expp1 10768 resqrexlemf1 11519 resqrexlemfp1 11520 clim2ser 11848 clim2ser2 11849 isermulc2 11851 summodclem3 11891 fisumss 11903 fsum3cvg3 11907 iserabs 11986 isumshft 12001 isumsplit 12002 geoisum1 12030 geoisum1c 12031 cvgratnnlemnexp 12035 cvgratz 12043 mertenslem2 12047 clim2prod 12050 clim2divap 12051 fprodseq 12094 prodssdc 12100 fprodssdc 12101 effsumlt 12203 efgt1p 12207 gcd0id 12500 nninfctlemfo 12561 lcmgcd 12600 lcmdvds 12601 lcmid 12602 isprm2lem 12638 pcmpt 12866 ennnfonelemjn 12973 issgrpd 13445 mulg1 13666 srglmhm 13956 srgrmhm 13957 ringlghm 14024 ringrghm 14025 neipsm 14828 xmetpsmet 15043 comet 15173 metrest 15180 expcncf 15283 lgscllem 15686 lgsdir2 15712 lgsdirnn0 15726 lgsdinn0 15727 cvgcmp2nlemabs 16400 nconstwlpolem 16433 |
| Copyright terms: Public domain | W3C validator |