ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12 Unicode version

Theorem tz6.12 5316
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
tz6.12  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Distinct variable groups:    y, F    y, A

Proof of Theorem tz6.12
StepHypRef Expression
1 df-br 3838 . 2  |-  ( A F y  <->  <. A , 
y >.  e.  F )
21eubii 1957 . 2  |-  ( E! y  A F y  <-> 
E! y <. A , 
y >.  e.  F )
3 tz6.12-1 5315 . 2  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
41, 2, 3syl2anbr 286 1  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   E!weu 1948   <.cop 3444   class class class wbr 3837   ` cfv 5002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-sbc 2839  df-un 3001  df-sn 3447  df-pr 3448  df-uni 3649  df-br 3838  df-iota 4967  df-fv 5010
This theorem is referenced by:  tz6.12f  5317
  Copyright terms: Public domain W3C validator