Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12 Unicode version

Theorem tz6.12 5442
 Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
tz6.12
Distinct variable groups:   ,   ,

Proof of Theorem tz6.12
StepHypRef Expression
1 df-br 3925 . 2
21eubii 2006 . 2
3 tz6.12-1 5441 . 2
41, 2, 3syl2anbr 290 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wceq 1331   wcel 1480  weu 1997  cop 3525   class class class wbr 3924  cfv 5118 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-sn 3528  df-pr 3529  df-uni 3732  df-br 3925  df-iota 5083  df-fv 5126 This theorem is referenced by:  tz6.12f  5443
 Copyright terms: Public domain W3C validator