ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12 Unicode version

Theorem tz6.12 5586
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
tz6.12  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Distinct variable groups:    y, F    y, A

Proof of Theorem tz6.12
StepHypRef Expression
1 df-br 4034 . 2  |-  ( A F y  <->  <. A , 
y >.  e.  F )
21eubii 2054 . 2  |-  ( E! y  A F y  <-> 
E! y <. A , 
y >.  e.  F )
3 tz6.12-1 5585 . 2  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
41, 2, 3syl2anbr 292 1  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E!weu 2045    e. wcel 2167   <.cop 3625   class class class wbr 4033   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266
This theorem is referenced by:  tz6.12f  5587
  Copyright terms: Public domain W3C validator