ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmuldivap Unicode version

Theorem divmuldivap 8496
Description: Multiplication of two ratios. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divmuldivap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )

Proof of Theorem divmuldivap
StepHypRef Expression
1 3anass 967 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  <->  ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) )
2 3anass 967 . . 3  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  <->  ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 ) ) )
3 divclap 8462 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( A  /  C )  e.  CC )
4 divclap 8462 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( B  /  D )  e.  CC )
5 mulcl 7771 . . . . . 6  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  D
)  e.  CC )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  e.  CC )
63, 4, 5syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( A  /  C
)  x.  ( B  /  D ) )  e.  CC )
7 mulcl 7771 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 501 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
983adantr1 1141 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  -> 
( C  x.  D
)  e.  CC )
1093adantl1 1138 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
11 mulap0 8439 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
12113adantr1 1141 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  -> 
( C  x.  D
) #  0 )
13123adantl1 1138 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
14 divcanap3 8482 . . . . 5  |-  ( ( ( ( A  /  C )  x.  ( B  /  D ) )  e.  CC  /\  ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 )  ->  ( (
( C  x.  D
)  x.  ( ( A  /  C )  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  /  C )  x.  ( B  /  D ) ) )
156, 10, 13, 14syl3anc 1217 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  /  C )  x.  ( B  /  D
) ) )
16 simp2 983 . . . . . . . 8  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  C  e.  CC )
1716, 3jca 304 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( C  e.  CC  /\  ( A  /  C )  e.  CC ) )
18 simp2 983 . . . . . . . 8  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  D  e.  CC )
1918, 4jca 304 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )
20 mul4 7918 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  ( A  /  C
)  e.  CC )  /\  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )  -> 
( ( C  x.  ( A  /  C
) )  x.  ( D  x.  ( B  /  D ) ) )  =  ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D ) ) ) )
2117, 19, 20syl2an 287 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D
) ) )  =  ( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) ) )
22 divcanap2 8464 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( C  x.  ( A  /  C ) )  =  A )
23 divcanap2 8464 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( D  x.  ( B  /  D ) )  =  B )
2422, 23oveqan12d 5801 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D
) ) )  =  ( A  x.  B
) )
2521, 24eqtr3d 2175 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( C  x.  D
)  x.  ( ( A  /  C )  x.  ( B  /  D ) ) )  =  ( A  x.  B ) )
2625oveq1d 5797 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  x.  B )  / 
( C  x.  D
) ) )
2715, 26eqtr3d 2175 . . 3  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( A  /  C
)  x.  ( B  /  D ) )  =  ( ( A  x.  B )  / 
( C  x.  D
) ) )
281, 2, 27syl2anbr 290 . 2  |-  ( ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  /\  ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
2928an4s 578 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   CCcc 7642   0cc0 7644    x. cmul 7649   # cap 8367    / cdiv 8456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457
This theorem is referenced by:  divdivdivap  8497  divcanap5  8498  divmul13ap  8499  divmul24ap  8500  divmuldivapi  8556  divmuldivapd  8616  qmulcl  9456  mulexpzap  10364  expaddzap  10368  sqdivap  10388
  Copyright terms: Public domain W3C validator