ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmuldivap Unicode version

Theorem divmuldivap 8820
Description: Multiplication of two ratios. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divmuldivap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )

Proof of Theorem divmuldivap
StepHypRef Expression
1 3anass 985 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  <->  ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) )
2 3anass 985 . . 3  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  <->  ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 ) ) )
3 divclap 8786 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( A  /  C )  e.  CC )
4 divclap 8786 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( B  /  D )  e.  CC )
5 mulcl 8087 . . . . . 6  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  D
)  e.  CC )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  e.  CC )
63, 4, 5syl2an 289 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( A  /  C
)  x.  ( B  /  D ) )  e.  CC )
7 mulcl 8087 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 509 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
983adantr1 1159 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  -> 
( C  x.  D
)  e.  CC )
1093adantl1 1156 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
11 mulap0 8762 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
12113adantr1 1159 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  -> 
( C  x.  D
) #  0 )
13123adantl1 1156 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
14 divcanap3 8806 . . . . 5  |-  ( ( ( ( A  /  C )  x.  ( B  /  D ) )  e.  CC  /\  ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 )  ->  ( (
( C  x.  D
)  x.  ( ( A  /  C )  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  /  C )  x.  ( B  /  D ) ) )
156, 10, 13, 14syl3anc 1250 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  /  C )  x.  ( B  /  D
) ) )
16 simp2 1001 . . . . . . . 8  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  C  e.  CC )
1716, 3jca 306 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( C  e.  CC  /\  ( A  /  C )  e.  CC ) )
18 simp2 1001 . . . . . . . 8  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  D  e.  CC )
1918, 4jca 306 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )
20 mul4 8239 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  ( A  /  C
)  e.  CC )  /\  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )  -> 
( ( C  x.  ( A  /  C
) )  x.  ( D  x.  ( B  /  D ) ) )  =  ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D ) ) ) )
2117, 19, 20syl2an 289 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D
) ) )  =  ( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) ) )
22 divcanap2 8788 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( C  x.  ( A  /  C ) )  =  A )
23 divcanap2 8788 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( D  x.  ( B  /  D ) )  =  B )
2422, 23oveqan12d 5986 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D
) ) )  =  ( A  x.  B
) )
2521, 24eqtr3d 2242 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( C  x.  D
)  x.  ( ( A  /  C )  x.  ( B  /  D ) ) )  =  ( A  x.  B ) )
2625oveq1d 5982 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  x.  B )  / 
( C  x.  D
) ) )
2715, 26eqtr3d 2242 . . 3  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( A  /  C
)  x.  ( B  /  D ) )  =  ( ( A  x.  B )  / 
( C  x.  D
) ) )
281, 2, 27syl2anbr 292 . 2  |-  ( ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  /\  ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
2928an4s 588 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958   0cc0 7960    x. cmul 7965   # cap 8689    / cdiv 8780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781
This theorem is referenced by:  divdivdivap  8821  divcanap5  8822  divmul13ap  8823  divmul24ap  8824  divmuldivapi  8880  divmuldivapd  8940  qmulcl  9793  mulexpzap  10761  expaddzap  10765  sqdivap  10785
  Copyright terms: Public domain W3C validator