ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmuldivap Unicode version

Theorem divmuldivap 8629
Description: Multiplication of two ratios. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divmuldivap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )

Proof of Theorem divmuldivap
StepHypRef Expression
1 3anass 977 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  <->  ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) )
2 3anass 977 . . 3  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  <->  ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 ) ) )
3 divclap 8595 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( A  /  C )  e.  CC )
4 divclap 8595 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( B  /  D )  e.  CC )
5 mulcl 7901 . . . . . 6  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  D
)  e.  CC )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  e.  CC )
63, 4, 5syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( A  /  C
)  x.  ( B  /  D ) )  e.  CC )
7 mulcl 7901 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 506 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
983adantr1 1151 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  -> 
( C  x.  D
)  e.  CC )
1093adantl1 1148 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
11 mulap0 8572 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
12113adantr1 1151 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  -> 
( C  x.  D
) #  0 )
13123adantl1 1148 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
14 divcanap3 8615 . . . . 5  |-  ( ( ( ( A  /  C )  x.  ( B  /  D ) )  e.  CC  /\  ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 )  ->  ( (
( C  x.  D
)  x.  ( ( A  /  C )  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  /  C )  x.  ( B  /  D ) ) )
156, 10, 13, 14syl3anc 1233 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  /  C )  x.  ( B  /  D
) ) )
16 simp2 993 . . . . . . . 8  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  C  e.  CC )
1716, 3jca 304 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( C  e.  CC  /\  ( A  /  C )  e.  CC ) )
18 simp2 993 . . . . . . . 8  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  D  e.  CC )
1918, 4jca 304 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )
20 mul4 8051 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  ( A  /  C
)  e.  CC )  /\  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )  -> 
( ( C  x.  ( A  /  C
) )  x.  ( D  x.  ( B  /  D ) ) )  =  ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D ) ) ) )
2117, 19, 20syl2an 287 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D
) ) )  =  ( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) ) )
22 divcanap2 8597 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( C  x.  ( A  /  C ) )  =  A )
23 divcanap2 8597 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( D  x.  ( B  /  D ) )  =  B )
2422, 23oveqan12d 5872 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D
) ) )  =  ( A  x.  B
) )
2521, 24eqtr3d 2205 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( C  x.  D
)  x.  ( ( A  /  C )  x.  ( B  /  D ) ) )  =  ( A  x.  B ) )
2625oveq1d 5868 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  x.  B )  / 
( C  x.  D
) ) )
2715, 26eqtr3d 2205 . . 3  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D #  0 ) )  ->  (
( A  /  C
)  x.  ( B  /  D ) )  =  ( ( A  x.  B )  / 
( C  x.  D
) ) )
281, 2, 27syl2anbr 290 . 2  |-  ( ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  /\  ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
2928an4s 583 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772   0cc0 7774    x. cmul 7779   # cap 8500    / cdiv 8589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590
This theorem is referenced by:  divdivdivap  8630  divcanap5  8631  divmul13ap  8632  divmul24ap  8633  divmuldivapi  8689  divmuldivapd  8749  qmulcl  9596  mulexpzap  10516  expaddzap  10520  sqdivap  10540
  Copyright terms: Public domain W3C validator