| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanbr | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanbr.1 |
|
| sylanbr.2 |
|
| Ref | Expression |
|---|---|
| sylanbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanbr.1 |
. . 3
| |
| 2 | 1 | biimpri 133 |
. 2
|
| 3 | sylanbr.2 |
. 2
| |
| 4 | 2, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 mosubt 2950 r19.2m 3547 funfvdm 5644 caovimo 6142 tfrlem7 6405 iinerm 6696 expclzaplem 10710 expgt0 10719 expge0 10722 expge1 10723 rplpwr 12381 4sqlem19 12765 |
| Copyright terms: Public domain | W3C validator |