Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncfval | Unicode version |
Description: The value of the continuous complex function operation is the set of continuous functions from to . (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.) |
Ref | Expression |
---|---|
cncfval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7885 | . . 3 | |
2 | 1 | elpw2 4141 | . 2 |
3 | 1 | elpw2 4141 | . 2 |
4 | mapvalg 6632 | . . . . . 6 | |
5 | 4 | ancoms 266 | . . . . 5 |
6 | mapex 6628 | . . . . 5 | |
7 | 5, 6 | eqeltrd 2247 | . . . 4 |
8 | rabexg 4130 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | oveq2 5858 | . . . . 5 | |
11 | raleq 2665 | . . . . . . . 8 | |
12 | 11 | rexbidv 2471 | . . . . . . 7 |
13 | 12 | ralbidv 2470 | . . . . . 6 |
14 | 13 | raleqbi1dv 2673 | . . . . 5 |
15 | 10, 14 | rabeqbidv 2725 | . . . 4 |
16 | oveq1 5857 | . . . . 5 | |
17 | 16 | rabeqdv 2724 | . . . 4 |
18 | df-cncf 13311 | . . . 4 | |
19 | 15, 17, 18 | ovmpog 5984 | . . 3 |
20 | 9, 19 | mpd3an3 1333 | . 2 |
21 | 2, 3, 20 | syl2anbr 290 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 crab 2452 cvv 2730 wss 3121 cpw 3564 class class class wbr 3987 wf 5192 cfv 5196 (class class class)co 5850 cmap 6622 cc 7759 clt 7941 cmin 8077 crp 9597 cabs 10948 ccncf 13310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-map 6624 df-cncf 13311 |
This theorem is referenced by: elcncf 13313 |
Copyright terms: Public domain | W3C validator |