ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfval Unicode version

Theorem cncfval 12767
Description: The value of the continuous complex function operation is the set of continuous functions from  A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
cncfval  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
Distinct variable groups:    w, f, x, y, z, A    B, f, w, x, y, z

Proof of Theorem cncfval
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7768 . . 3  |-  CC  e.  _V
21elpw2 4090 . 2  |-  ( A  e.  ~P CC  <->  A  C_  CC )
31elpw2 4090 . 2  |-  ( B  e.  ~P CC  <->  B  C_  CC )
4 mapvalg 6560 . . . . . 6  |-  ( ( B  e.  ~P CC  /\  A  e.  ~P CC )  ->  ( B  ^m  A )  =  {
f  |  f : A --> B } )
54ancoms 266 . . . . 5  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  ( B  ^m  A )  =  {
f  |  f : A --> B } )
6 mapex 6556 . . . . 5  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  { f  |  f : A --> B }  e.  _V )
75, 6eqeltrd 2217 . . . 4  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  ( B  ^m  A )  e.  _V )
8 rabexg 4079 . . . 4  |-  ( ( B  ^m  A )  e.  _V  ->  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  e.  _V )
97, 8syl 14 . . 3  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  { f  e.  ( B  ^m  A
)  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  e.  _V )
10 oveq2 5790 . . . . 5  |-  ( a  =  A  ->  (
b  ^m  a )  =  ( b  ^m  A ) )
11 raleq 2629 . . . . . . . 8  |-  ( a  =  A  ->  ( A. w  e.  a 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
1211rexbidv 2439 . . . . . . 7  |-  ( a  =  A  ->  ( E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
1312ralbidv 2438 . . . . . 6  |-  ( a  =  A  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
1413raleqbi1dv 2637 . . . . 5  |-  ( a  =  A  ->  ( A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
1510, 14rabeqbidv 2684 . . . 4  |-  ( a  =  A  ->  { f  e.  ( b  ^m  a )  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  =  { f  e.  ( b  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
16 oveq1 5789 . . . . 5  |-  ( b  =  B  ->  (
b  ^m  A )  =  ( B  ^m  A ) )
1716rabeqdv 2683 . . . 4  |-  ( b  =  B  ->  { f  e.  ( b  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
18 df-cncf 12766 . . . 4  |-  -cn->  =  ( a  e.  ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
)  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
1915, 17, 18ovmpog 5913 . . 3  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC  /\ 
{ f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  e.  _V )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A
)  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
209, 19mpd3an3 1317 . 2  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
212, 3, 20syl2anbr 290 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418   {crab 2421   _Vcvv 2689    C_ wss 3076   ~Pcpw 3515   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782    ^m cmap 6550   CCcc 7642    < clt 7824    - cmin 7957   RR+crp 9470   abscabs 10801   -cn->ccncf 12765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-map 6552  df-cncf 12766
This theorem is referenced by:  elcncf  12768
  Copyright terms: Public domain W3C validator