| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfval | Unicode version | ||
| Description: The value of the
continuous complex function operation is the set of
continuous functions from |
| Ref | Expression |
|---|---|
| cncfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8069 |
. . 3
| |
| 2 | 1 | elpw2 4209 |
. 2
|
| 3 | 1 | elpw2 4209 |
. 2
|
| 4 | mapvalg 6758 |
. . . . . 6
| |
| 5 | 4 | ancoms 268 |
. . . . 5
|
| 6 | mapex 6754 |
. . . . 5
| |
| 7 | 5, 6 | eqeltrd 2283 |
. . . 4
|
| 8 | rabexg 4195 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | oveq2 5965 |
. . . . 5
| |
| 11 | raleq 2703 |
. . . . . . . 8
| |
| 12 | 11 | rexbidv 2508 |
. . . . . . 7
|
| 13 | 12 | ralbidv 2507 |
. . . . . 6
|
| 14 | 13 | raleqbi1dv 2715 |
. . . . 5
|
| 15 | 10, 14 | rabeqbidv 2768 |
. . . 4
|
| 16 | oveq1 5964 |
. . . . 5
| |
| 17 | 16 | rabeqdv 2767 |
. . . 4
|
| 18 | df-cncf 15118 |
. . . 4
| |
| 19 | 15, 17, 18 | ovmpog 6093 |
. . 3
|
| 20 | 9, 19 | mpd3an3 1351 |
. 2
|
| 21 | 2, 3, 20 | syl2anbr 292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-map 6750 df-cncf 15118 |
| This theorem is referenced by: elcncf 15120 |
| Copyright terms: Public domain | W3C validator |