Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncfval | Unicode version |
Description: The value of the continuous complex function operation is the set of continuous functions from to . (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.) |
Ref | Expression |
---|---|
cncfval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7898 | . . 3 | |
2 | 1 | elpw2 4143 | . 2 |
3 | 1 | elpw2 4143 | . 2 |
4 | mapvalg 6636 | . . . . . 6 | |
5 | 4 | ancoms 266 | . . . . 5 |
6 | mapex 6632 | . . . . 5 | |
7 | 5, 6 | eqeltrd 2247 | . . . 4 |
8 | rabexg 4132 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | oveq2 5861 | . . . . 5 | |
11 | raleq 2665 | . . . . . . . 8 | |
12 | 11 | rexbidv 2471 | . . . . . . 7 |
13 | 12 | ralbidv 2470 | . . . . . 6 |
14 | 13 | raleqbi1dv 2673 | . . . . 5 |
15 | 10, 14 | rabeqbidv 2725 | . . . 4 |
16 | oveq1 5860 | . . . . 5 | |
17 | 16 | rabeqdv 2724 | . . . 4 |
18 | df-cncf 13352 | . . . 4 | |
19 | 15, 17, 18 | ovmpog 5987 | . . 3 |
20 | 9, 19 | mpd3an3 1333 | . 2 |
21 | 2, 3, 20 | syl2anbr 290 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 crab 2452 cvv 2730 wss 3121 cpw 3566 class class class wbr 3989 wf 5194 cfv 5198 (class class class)co 5853 cmap 6626 cc 7772 clt 7954 cmin 8090 crp 9610 cabs 10961 ccncf 13351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-map 6628 df-cncf 13352 |
This theorem is referenced by: elcncf 13354 |
Copyright terms: Public domain | W3C validator |