Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclf | Unicode version |
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1745. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
vtoclf.1 | |
vtoclf.2 | |
vtoclf.3 | |
vtoclf.4 |
Ref | Expression |
---|---|
vtoclf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclf.1 | . . 3 | |
2 | vtoclf.2 | . . . . 5 | |
3 | 2 | isseti 2734 | . . . 4 |
4 | vtoclf.3 | . . . . 5 | |
5 | 4 | biimpd 143 | . . . 4 |
6 | 3, 5 | eximii 1590 | . . 3 |
7 | 1, 6 | 19.36i 1660 | . 2 |
8 | vtoclf.4 | . 2 | |
9 | 7, 8 | mpg 1439 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wnf 1448 wcel 2136 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: vtocl 2780 |
Copyright terms: Public domain | W3C validator |