| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtoclf | Unicode version | ||
| Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1771. (Contributed by NM, 30-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| vtoclf.1 | 
 | 
| vtoclf.2 | 
 | 
| vtoclf.3 | 
 | 
| vtoclf.4 | 
 | 
| Ref | Expression | 
|---|---|
| vtoclf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtoclf.1 | 
. . 3
 | |
| 2 | vtoclf.2 | 
. . . . 5
 | |
| 3 | 2 | isseti 2771 | 
. . . 4
 | 
| 4 | vtoclf.3 | 
. . . . 5
 | |
| 5 | 4 | biimpd 144 | 
. . . 4
 | 
| 6 | 3, 5 | eximii 1616 | 
. . 3
 | 
| 7 | 1, 6 | 19.36i 1686 | 
. 2
 | 
| 8 | vtoclf.4 | 
. 2
 | |
| 9 | 7, 8 | mpg 1465 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: vtocl 2818 | 
| Copyright terms: Public domain | W3C validator |