ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclf Unicode version

Theorem vtoclf 2783
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1750. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtoclf.1  |-  F/ x ps
vtoclf.2  |-  A  e. 
_V
vtoclf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclf.4  |-  ph
Assertion
Ref Expression
vtoclf  |-  ps
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . . 3  |-  F/ x ps
2 vtoclf.2 . . . . 5  |-  A  e. 
_V
32isseti 2738 . . . 4  |-  E. x  x  =  A
4 vtoclf.3 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
54biimpd 143 . . . 4  |-  ( x  =  A  ->  ( ph  ->  ps ) )
63, 5eximii 1595 . . 3  |-  E. x
( ph  ->  ps )
71, 619.36i 1665 . 2  |-  ( A. x ph  ->  ps )
8 vtoclf.4 . 2  |-  ph
97, 8mpg 1444 1  |-  ps
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   F/wnf 1453    e. wcel 2141   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  vtocl  2784
  Copyright terms: Public domain W3C validator