ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isseti Unicode version

Theorem isseti 2771
Description: A way to say " A is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
isseti.1  |-  A  e. 
_V
Assertion
Ref Expression
isseti  |-  E. x  x  =  A
Distinct variable group:    x, A

Proof of Theorem isseti
StepHypRef Expression
1 isseti.1 . 2  |-  A  e. 
_V
2 isset 2769 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2mpbi 145 1  |-  E. x  x  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  rexcom4b  2788  ceqsex  2801  ceqsexv2d  2803  vtoclf  2817  vtocl2  2819  vtocl3  2820  vtoclef  2837  eqvinc  2887  euind  2951  opabm  4316  eusv2nf  4492  dtruex  4596  limom  4651  isarep2  5346  dfoprab2  5973  rnoprab  6009  dmaddpq  7463  dmmulpq  7464  bj-inf2vnlem1  15700
  Copyright terms: Public domain W3C validator