| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isseti | Unicode version | ||
| Description: A way to say " |
| Ref | Expression |
|---|---|
| isseti.1 |
|
| Ref | Expression |
|---|---|
| isseti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 |
. 2
| |
| 2 | isset 2778 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: rexcom4b 2797 ceqsex 2810 ceqsexv2d 2812 vtoclf 2826 vtocl2 2828 vtocl3 2829 vtoclef 2846 eqvinc 2896 euind 2960 opabm 4327 eusv2nf 4503 dtruex 4607 limom 4662 isarep2 5361 dfoprab2 5992 rnoprab 6028 dmaddpq 7492 dmmulpq 7493 bj-inf2vnlem1 15910 |
| Copyright terms: Public domain | W3C validator |