| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isseti | Unicode version | ||
| Description: A way to say " |
| Ref | Expression |
|---|---|
| isseti.1 |
|
| Ref | Expression |
|---|---|
| isseti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 |
. 2
| |
| 2 | isset 2806 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: rexcom4b 2825 ceqsex 2838 ceqsexv2d 2840 vtoclf 2854 vtocl2 2856 vtocl3 2857 vtoclef 2876 eqvinc 2926 euind 2990 opabm 4369 eusv2nf 4547 dtruex 4651 limom 4706 isarep2 5408 dfoprab2 6051 rnoprab 6087 dmaddpq 7566 dmmulpq 7567 bj-inf2vnlem1 16333 |
| Copyright terms: Public domain | W3C validator |