![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isseti | Unicode version |
Description: A way to say "![]() |
Ref | Expression |
---|---|
isseti.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
isseti |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | isset 2663 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 144 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-v 2659 |
This theorem is referenced by: rexcom4b 2682 ceqsex 2695 vtoclf 2710 vtocl2 2712 vtocl3 2713 vtoclef 2730 eqvinc 2778 euind 2840 opabm 4162 eusv2nf 4337 dtruex 4434 limom 4487 isarep2 5168 dfoprab2 5772 rnoprab 5808 dmaddpq 7135 dmmulpq 7136 bj-inf2vnlem1 12860 |
Copyright terms: Public domain | W3C validator |