| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isseti | Unicode version | ||
| Description: A way to say " |
| Ref | Expression |
|---|---|
| isseti.1 |
|
| Ref | Expression |
|---|---|
| isseti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 |
. 2
| |
| 2 | isset 2783 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: rexcom4b 2802 ceqsex 2815 ceqsexv2d 2817 vtoclf 2831 vtocl2 2833 vtocl3 2834 vtoclef 2853 eqvinc 2903 euind 2967 opabm 4345 eusv2nf 4521 dtruex 4625 limom 4680 isarep2 5380 dfoprab2 6015 rnoprab 6051 dmaddpq 7527 dmmulpq 7528 bj-inf2vnlem1 16105 |
| Copyright terms: Public domain | W3C validator |