ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isseti Unicode version

Theorem isseti 2734
Description: A way to say " A is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
isseti.1  |-  A  e. 
_V
Assertion
Ref Expression
isseti  |-  E. x  x  =  A
Distinct variable group:    x, A

Proof of Theorem isseti
StepHypRef Expression
1 isseti.1 . 2  |-  A  e. 
_V
2 isset 2732 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2mpbi 144 1  |-  E. x  x  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  rexcom4b  2751  ceqsex  2764  vtoclf  2779  vtocl2  2781  vtocl3  2782  vtoclef  2799  eqvinc  2849  euind  2913  opabm  4258  eusv2nf  4434  dtruex  4536  limom  4591  isarep2  5275  dfoprab2  5889  rnoprab  5925  dmaddpq  7320  dmmulpq  7321  bj-inf2vnlem1  13862
  Copyright terms: Public domain W3C validator