ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isseti Unicode version

Theorem isseti 2780
Description: A way to say " A is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
isseti.1  |-  A  e. 
_V
Assertion
Ref Expression
isseti  |-  E. x  x  =  A
Distinct variable group:    x, A

Proof of Theorem isseti
StepHypRef Expression
1 isseti.1 . 2  |-  A  e. 
_V
2 isset 2778 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2mpbi 145 1  |-  E. x  x  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  rexcom4b  2797  ceqsex  2810  ceqsexv2d  2812  vtoclf  2826  vtocl2  2828  vtocl3  2829  vtoclef  2846  eqvinc  2896  euind  2960  opabm  4327  eusv2nf  4503  dtruex  4607  limom  4662  isarep2  5361  dfoprab2  5992  rnoprab  6028  dmaddpq  7492  dmmulpq  7493  bj-inf2vnlem1  15910
  Copyright terms: Public domain W3C validator