ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isseti Unicode version

Theorem isseti 2785
Description: A way to say " A is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
isseti.1  |-  A  e. 
_V
Assertion
Ref Expression
isseti  |-  E. x  x  =  A
Distinct variable group:    x, A

Proof of Theorem isseti
StepHypRef Expression
1 isseti.1 . 2  |-  A  e. 
_V
2 isset 2783 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2mpbi 145 1  |-  E. x  x  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778
This theorem is referenced by:  rexcom4b  2802  ceqsex  2815  ceqsexv2d  2817  vtoclf  2831  vtocl2  2833  vtocl3  2834  vtoclef  2853  eqvinc  2903  euind  2967  opabm  4345  eusv2nf  4521  dtruex  4625  limom  4680  isarep2  5380  dfoprab2  6015  rnoprab  6051  dmaddpq  7527  dmmulpq  7528  bj-inf2vnlem1  16105
  Copyright terms: Public domain W3C validator