Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclf | GIF version |
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1745. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
vtoclf.1 | ⊢ Ⅎ𝑥𝜓 |
vtoclf.2 | ⊢ 𝐴 ∈ V |
vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclf.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclf | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | vtoclf.2 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | 2 | isseti 2734 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 |
4 | vtoclf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | biimpd 143 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
6 | 3, 5 | eximii 1590 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
7 | 1, 6 | 19.36i 1660 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
8 | vtoclf.4 | . 2 ⊢ 𝜑 | |
9 | 7, 8 | mpg 1439 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: vtocl 2780 |
Copyright terms: Public domain | W3C validator |