ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclf GIF version

Theorem vtoclf 2783
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1750. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtoclf.1 𝑥𝜓
vtoclf.2 𝐴 ∈ V
vtoclf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclf.4 𝜑
Assertion
Ref Expression
vtoclf 𝜓
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . . 3 𝑥𝜓
2 vtoclf.2 . . . . 5 𝐴 ∈ V
32isseti 2738 . . . 4 𝑥 𝑥 = 𝐴
4 vtoclf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
54biimpd 143 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
63, 5eximii 1595 . . 3 𝑥(𝜑𝜓)
71, 619.36i 1665 . 2 (∀𝑥𝜑𝜓)
8 vtoclf.4 . 2 𝜑
97, 8mpg 1444 1 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wnf 1453  wcel 2141  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  vtocl  2784
  Copyright terms: Public domain W3C validator