| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclf | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1803. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| vtoclf.1 | ⊢ Ⅎ𝑥𝜓 |
| vtoclf.2 | ⊢ 𝐴 ∈ V |
| vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclf.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclf | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | vtoclf.2 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 3 | 2 | isseti 2808 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 4 | vtoclf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | biimpd 144 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| 6 | 3, 5 | eximii 1648 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
| 7 | 1, 6 | 19.36i 1718 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 8 | vtoclf.4 | . 2 ⊢ 𝜑 | |
| 9 | 7, 8 | mpg 1497 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: vtocl 2855 |
| Copyright terms: Public domain | W3C validator |