ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl Unicode version

Theorem vtocl 2832
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtocl.1  |-  A  e. 
_V
vtocl.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtocl.3  |-  ph
Assertion
Ref Expression
vtocl  |-  ps
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem vtocl
StepHypRef Expression
1 nfv 1552 . 2  |-  F/ x ps
2 vtocl.1 . 2  |-  A  e. 
_V
3 vtocl.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtocl.3 . 2  |-  ph
51, 2, 3, 4vtoclf 2831 1  |-  ps
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778
This theorem is referenced by:  vtoclb  2835  zfauscl  4180  bnd2  4233  uniex  4502  ordtriexmid  4587  onsucsssucexmid  4593  regexmid  4601  ordsoexmid  4628  onintexmid  4639  reg3exmid  4646  nnregexmid  4687  acexmidlemv  5965  caovcan  6134  findcard2  7012  findcard2s  7013  inffiexmid  7029  sup3exmid  9065  bj-uniex  16052  bj-omtrans  16091
  Copyright terms: Public domain W3C validator