ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl Unicode version

Theorem vtocl 2780
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtocl.1  |-  A  e. 
_V
vtocl.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtocl.3  |-  ph
Assertion
Ref Expression
vtocl  |-  ps
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem vtocl
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ps
2 vtocl.1 . 2  |-  A  e. 
_V
3 vtocl.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtocl.3 . 2  |-  ph
51, 2, 3, 4vtoclf 2779 1  |-  ps
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  vtoclb  2783  zfauscl  4102  bnd2  4152  uniex  4415  ordtriexmid  4498  onsucsssucexmid  4504  regexmid  4512  ordsoexmid  4539  onintexmid  4550  reg3exmid  4557  nnregexmid  4598  acexmidlemv  5840  caovcan  6006  findcard2  6855  findcard2s  6856  inffiexmid  6872  sup3exmid  8852  bj-uniex  13799  bj-omtrans  13838
  Copyright terms: Public domain W3C validator