ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocld Unicode version

Theorem vtocld 2812
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1  |-  ( ph  ->  A  e.  V )
vtocld.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
vtocld.3  |-  ( ph  ->  ps )
Assertion
Ref Expression
vtocld  |-  ( ph  ->  ch )
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . 2  |-  ( ph  ->  A  e.  V )
2 vtocld.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
3 vtocld.3 . 2  |-  ( ph  ->  ps )
4 nfv 1539 . 2  |-  F/ x ph
5 nfcvd 2337 . 2  |-  ( ph  -> 
F/_ x A )
6 nfvd 1540 . 2  |-  ( ph  ->  F/ x ch )
71, 2, 3, 4, 5, 6vtocldf 2811 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  funfvima3  5792  isbth  7026  frec2uzuzd  10473  setscomd  12659
  Copyright terms: Public domain W3C validator