Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocld Unicode version

Theorem vtocld 2761
 Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1
vtocld.2
vtocld.3
Assertion
Ref Expression
vtocld
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . 2
2 vtocld.2 . 2
3 vtocld.3 . 2
4 nfv 1505 . 2
5 nfcvd 2297 . 2
6 nfvd 1506 . 2
71, 2, 3, 4, 5, 6vtocldf 2760 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1332   wcel 2125 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-3an 965  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711 This theorem is referenced by:  funfvima3  5691  isbth  6900  frec2uzuzd  10279
 Copyright terms: Public domain W3C validator