ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocld Unicode version

Theorem vtocld 2830
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1  |-  ( ph  ->  A  e.  V )
vtocld.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
vtocld.3  |-  ( ph  ->  ps )
Assertion
Ref Expression
vtocld  |-  ( ph  ->  ch )
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . 2  |-  ( ph  ->  A  e.  V )
2 vtocld.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
3 vtocld.3 . 2  |-  ( ph  ->  ps )
4 nfv 1552 . 2  |-  F/ x ph
5 nfcvd 2351 . 2  |-  ( ph  -> 
F/_ x A )
6 nfvd 1553 . 2  |-  ( ph  ->  F/ x ch )
71, 2, 3, 4, 5, 6vtocldf 2829 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  funfvima3  5841  isbth  7095  frec2uzuzd  10584  setscomd  12988
  Copyright terms: Public domain W3C validator