ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocld Unicode version

Theorem vtocld 2782
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1  |-  ( ph  ->  A  e.  V )
vtocld.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
vtocld.3  |-  ( ph  ->  ps )
Assertion
Ref Expression
vtocld  |-  ( ph  ->  ch )
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . 2  |-  ( ph  ->  A  e.  V )
2 vtocld.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
3 vtocld.3 . 2  |-  ( ph  ->  ps )
4 nfv 1521 . 2  |-  F/ x ph
5 nfcvd 2313 . 2  |-  ( ph  -> 
F/_ x A )
6 nfvd 1522 . 2  |-  ( ph  ->  F/ x ch )
71, 2, 3, 4, 5, 6vtocldf 2781 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  funfvima3  5729  isbth  6944  frec2uzuzd  10358
  Copyright terms: Public domain W3C validator