ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp32 Unicode version

Theorem exp32 365
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp32.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
exp32  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )

Proof of Theorem exp32
StepHypRef Expression
1 exp32.1 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
21ex 115 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
32expd 258 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  exp44  373  exp45  374  expr  375  anassrs  400  an13s  567  3impb  1199  xordidc  1399  f0rn0  5411  funfvima3  5751  isoini  5819  ovg  6013  fundmen  6806  distrlem1prl  7581  distrlem1pru  7582  caucvgprprlemaddq  7707  recexgt0sr  7772  axpre-suploclemres  7900  cnegexlem2  8133  mulgt1  8820  faclbnd  10721  divgcdcoprm0  12101  cncongr2  12104  oddpwdclemdvds  12170  oddpwdclemndvds  12171  infpnlem1  12357  cnpnei  13722  zabsle1  14403
  Copyright terms: Public domain W3C validator