ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp32 Unicode version

Theorem exp32 365
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp32.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
exp32  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )

Proof of Theorem exp32
StepHypRef Expression
1 exp32.1 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
21ex 115 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
32expd 258 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  exp44  373  exp45  374  expr  375  anassrs  400  an13s  567  3impb  1202  xordidc  1419  f0rn0  5470  funfvima3  5818  isoini  5887  ovg  6085  fundmen  6898  distrlem1prl  7695  distrlem1pru  7696  caucvgprprlemaddq  7821  recexgt0sr  7886  axpre-suploclemres  8014  cnegexlem2  8248  mulgt1  8936  faclbnd  10886  swrdwrdsymbg  11117  divgcdcoprm0  12423  cncongr2  12426  oddpwdclemdvds  12492  oddpwdclemndvds  12493  infpnlem1  12682  imasabl  13672  cnpnei  14691  dvmptfsum  15197  zabsle1  15476  lgsquad2lem2  15559  2lgsoddprm  15590
  Copyright terms: Public domain W3C validator