| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfexd | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 7-Feb-2018.) |
| Ref | Expression |
|---|---|
| nfald.1 | ⊢ Ⅎ𝑦𝜑 |
| nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfald.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1533 | . . . . . 6 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | nfald.2 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | df-nf 1475 | . . . . . . 7 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
| 5 | 3, 4 | sylib 122 | . . . . . 6 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
| 6 | 2, 5 | alrimih 1483 | . . . . 5 ⊢ (𝜑 → ∀𝑦∀𝑥(𝜓 → ∀𝑥𝜓)) |
| 7 | alcom 1492 | . . . . 5 ⊢ (∀𝑦∀𝑥(𝜓 → ∀𝑥𝜓) ↔ ∀𝑥∀𝑦(𝜓 → ∀𝑥𝜓)) | |
| 8 | 6, 7 | sylib 122 | . . . 4 ⊢ (𝜑 → ∀𝑥∀𝑦(𝜓 → ∀𝑥𝜓)) |
| 9 | exim 1613 | . . . . 5 ⊢ (∀𝑦(𝜓 → ∀𝑥𝜓) → (∃𝑦𝜓 → ∃𝑦∀𝑥𝜓)) | |
| 10 | 9 | alimi 1469 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜓 → ∀𝑥𝜓) → ∀𝑥(∃𝑦𝜓 → ∃𝑦∀𝑥𝜓)) |
| 11 | 8, 10 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑥(∃𝑦𝜓 → ∃𝑦∀𝑥𝜓)) |
| 12 | 19.12 1679 | . . . . 5 ⊢ (∃𝑦∀𝑥𝜓 → ∀𝑥∃𝑦𝜓) | |
| 13 | 12 | imim2i 12 | . . . 4 ⊢ ((∃𝑦𝜓 → ∃𝑦∀𝑥𝜓) → (∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) |
| 14 | 13 | alimi 1469 | . . 3 ⊢ (∀𝑥(∃𝑦𝜓 → ∃𝑦∀𝑥𝜓) → ∀𝑥(∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) |
| 15 | 11, 14 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑥(∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) |
| 16 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥∃𝑦𝜓 ↔ ∀𝑥(∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) | |
| 17 | 15, 16 | sylibr 134 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfsbxy 1961 nfsbxyt 1962 nfeudv 2060 nfmod 2062 nfeld 2355 nfrexdxy 2531 |
| Copyright terms: Public domain | W3C validator |