| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrdi | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| biimtrdi.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| biimtrdi.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| biimtrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrdi.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | biimtrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.33bdc 1644 ax11i 1728 equveli 1773 eupickbi 2127 nfabdw 2358 rgen2a 2551 reu6 2953 sseq0 3493 disjel 3506 preq12b 3801 prel12 3802 prneimg 3805 elinti 3884 exmidundif 4240 opthreg 4593 elreldm 4893 issref 5053 relcnvtr 5190 relresfld 5200 funopg 5293 funimass2 5337 f0dom0 5452 fvimacnv 5678 elunirn 5814 oprabid 5955 op1steq 6238 f1o2ndf1 6287 reldmtpos 6312 rntpos 6316 nntri3or 6552 nnaordex 6587 nnawordex 6588 findcard2 6951 findcard2s 6952 mkvprop 7225 cc2lem 7335 lt2addnq 7473 lt2mulnq 7474 genpelvl 7581 genpelvu 7582 distrlem5prl 7655 distrlem5pru 7656 caucvgprlemnkj 7735 map2psrprg 7874 rereceu 7958 ltxrlt 8094 0mnnnnn0 9283 elnnnn0b 9295 nn0le2is012 9410 btwnz 9447 uz11 9626 nn01to3 9693 zq 9702 xrltso 9873 xltnegi 9912 xnn0lenn0nn0 9942 xnn0xadd0 9944 iccleub 10008 fzdcel 10117 uznfz 10180 2ffzeq 10218 elfzonlteqm1 10288 icogelb 10357 flqeqceilz 10412 modqadd1 10455 modqmul1 10471 frecuzrdgtcl 10506 frecuzrdgfunlem 10513 fzfig 10524 seqf1og 10615 m1expeven 10680 qsqeqor 10744 caucvgrelemcau 11147 rexico 11388 fisumss 11559 fsum2dlemstep 11601 ntrivcvgap 11715 fprodssdc 11757 fprod2dlemstep 11789 0dvds 11978 alzdvds 12021 opoe 12062 omoe 12063 opeo 12064 omeo 12065 m1exp1 12068 nn0enne 12069 nn0o1gt2 12072 gcdneg 12159 dfgcd2 12191 algcvgblem 12227 algcvga 12229 eucalglt 12235 coprmdvds 12270 divgcdcoprmex 12280 cncongr1 12281 prm2orodd 12304 prm23lt5 12442 pockthi 12537 f1ocpbl 12964 f1ovscpbl 12965 f1olecpbl 12966 ismnddef 13069 lmodfopnelem1 13890 tg2 14306 tgcl 14310 neii1 14393 neii2 14395 txlm 14525 reopnap 14792 tgioo 14800 addcncntoplem 14807 gausslemma2dlem0i 15308 2lgslem2 15343 2lgs 15355 2lgsoddprmlem3 15362 bj-elssuniab 15447 bj-nn0sucALT 15634 triap 15683 |
| Copyright terms: Public domain | W3C validator |