| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrdi | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| biimtrdi.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| biimtrdi.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| biimtrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrdi.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | biimtrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.33bdc 1644 ax11i 1728 equveli 1773 eupickbi 2127 nfabdw 2358 rgen2a 2551 reu6 2953 sseq0 3493 disjel 3506 preq12b 3801 prel12 3802 prneimg 3805 elinti 3884 exmidundif 4240 opthreg 4593 elreldm 4893 issref 5053 relcnvtr 5190 relresfld 5200 funopg 5293 funimass2 5337 f0dom0 5454 fvimacnv 5680 elunirn 5816 oprabid 5957 op1steq 6246 f1o2ndf1 6295 reldmtpos 6320 rntpos 6324 nntri3or 6560 nnaordex 6595 nnawordex 6596 findcard2 6959 findcard2s 6960 mkvprop 7233 cc2lem 7351 lt2addnq 7490 lt2mulnq 7491 genpelvl 7598 genpelvu 7599 distrlem5prl 7672 distrlem5pru 7673 caucvgprlemnkj 7752 map2psrprg 7891 rereceu 7975 ltxrlt 8111 0mnnnnn0 9300 elnnnn0b 9312 nn0le2is012 9427 btwnz 9464 uz11 9643 nn01to3 9710 zq 9719 xrltso 9890 xltnegi 9929 xnn0lenn0nn0 9959 xnn0xadd0 9961 iccleub 10025 fzdcel 10134 uznfz 10197 2ffzeq 10235 elfzonlteqm1 10305 icogelb 10374 flqeqceilz 10429 modqadd1 10472 modqmul1 10488 frecuzrdgtcl 10523 frecuzrdgfunlem 10530 fzfig 10541 seqf1og 10632 m1expeven 10697 qsqeqor 10761 caucvgrelemcau 11164 rexico 11405 fisumss 11576 fsum2dlemstep 11618 ntrivcvgap 11732 fprodssdc 11774 fprod2dlemstep 11806 0dvds 11995 alzdvds 12038 opoe 12079 omoe 12080 opeo 12081 omeo 12082 m1exp1 12085 nn0enne 12086 nn0o1gt2 12089 gcdneg 12176 dfgcd2 12208 algcvgblem 12244 algcvga 12246 eucalglt 12252 coprmdvds 12287 divgcdcoprmex 12297 cncongr1 12298 prm2orodd 12321 prm23lt5 12459 pockthi 12554 f1ocpbl 13015 f1ovscpbl 13016 f1olecpbl 13017 ismnddef 13122 lmodfopnelem1 13958 tg2 14404 tgcl 14408 neii1 14491 neii2 14493 txlm 14623 reopnap 14890 tgioo 14898 addcncntoplem 14905 gausslemma2dlem0i 15406 2lgslem2 15441 2lgs 15453 2lgsoddprmlem3 15460 bj-elssuniab 15545 bj-nn0sucALT 15732 triap 15786 |
| Copyright terms: Public domain | W3C validator |