![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrdi | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
biimtrdi.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
biimtrdi.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
biimtrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrdi.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | biimtrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.33bdc 1640 ax11i 1724 equveli 1769 eupickbi 2118 nfabdw 2348 rgen2a 2541 reu6 2938 sseq0 3476 disjel 3489 preq12b 3782 prel12 3783 prneimg 3786 elinti 3865 exmidundif 4218 opthreg 4567 elreldm 4865 issref 5023 relcnvtr 5160 relresfld 5170 funopg 5262 funimass2 5306 f0dom0 5421 fvimacnv 5644 elunirn 5780 oprabid 5920 op1steq 6194 f1o2ndf1 6243 reldmtpos 6268 rntpos 6272 nntri3or 6508 nnaordex 6543 nnawordex 6544 findcard2 6903 findcard2s 6904 mkvprop 7170 cc2lem 7279 lt2addnq 7417 lt2mulnq 7418 genpelvl 7525 genpelvu 7526 distrlem5prl 7599 distrlem5pru 7600 caucvgprlemnkj 7679 map2psrprg 7818 rereceu 7902 ltxrlt 8037 0mnnnnn0 9222 elnnnn0b 9234 nn0le2is012 9349 btwnz 9386 uz11 9564 nn01to3 9631 zq 9640 xrltso 9810 xltnegi 9849 xnn0lenn0nn0 9879 xnn0xadd0 9881 iccleub 9945 fzdcel 10054 uznfz 10117 2ffzeq 10155 elfzonlteqm1 10224 icogelb 10280 flqeqceilz 10332 modqadd1 10375 modqmul1 10391 frecuzrdgtcl 10426 frecuzrdgfunlem 10433 fzfig 10444 m1expeven 10581 qsqeqor 10645 caucvgrelemcau 11003 rexico 11244 fisumss 11414 fsum2dlemstep 11456 ntrivcvgap 11570 fprodssdc 11612 fprod2dlemstep 11644 0dvds 11832 alzdvds 11874 opoe 11914 omoe 11915 opeo 11916 omeo 11917 m1exp1 11920 nn0enne 11921 nn0o1gt2 11924 gcdneg 11997 dfgcd2 12029 algcvgblem 12063 algcvga 12065 eucalglt 12071 coprmdvds 12106 divgcdcoprmex 12116 cncongr1 12117 prm2orodd 12140 prm23lt5 12277 pockthi 12370 f1ocpbl 12750 f1ovscpbl 12751 f1olecpbl 12752 ismnddef 12841 lmodfopnelem1 13513 tg2 13856 tgcl 13860 neii1 13943 neii2 13945 txlm 14075 reopnap 14334 tgioo 14342 addcncntoplem 14347 2lgsoddprmlem3 14755 bj-elssuniab 14839 bj-nn0sucALT 15026 triap 15074 |
Copyright terms: Public domain | W3C validator |