![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrdi | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
biimtrdi.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
biimtrdi.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
biimtrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrdi.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | biimtrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.33bdc 1641 ax11i 1725 equveli 1770 eupickbi 2124 nfabdw 2355 rgen2a 2548 reu6 2950 sseq0 3489 disjel 3502 preq12b 3797 prel12 3798 prneimg 3801 elinti 3880 exmidundif 4236 opthreg 4589 elreldm 4889 issref 5049 relcnvtr 5186 relresfld 5196 funopg 5289 funimass2 5333 f0dom0 5448 fvimacnv 5674 elunirn 5810 oprabid 5951 op1steq 6234 f1o2ndf1 6283 reldmtpos 6308 rntpos 6312 nntri3or 6548 nnaordex 6583 nnawordex 6584 findcard2 6947 findcard2s 6948 mkvprop 7219 cc2lem 7328 lt2addnq 7466 lt2mulnq 7467 genpelvl 7574 genpelvu 7575 distrlem5prl 7648 distrlem5pru 7649 caucvgprlemnkj 7728 map2psrprg 7867 rereceu 7951 ltxrlt 8087 0mnnnnn0 9275 elnnnn0b 9287 nn0le2is012 9402 btwnz 9439 uz11 9618 nn01to3 9685 zq 9694 xrltso 9865 xltnegi 9904 xnn0lenn0nn0 9934 xnn0xadd0 9936 iccleub 10000 fzdcel 10109 uznfz 10172 2ffzeq 10210 elfzonlteqm1 10280 icogelb 10337 flqeqceilz 10392 modqadd1 10435 modqmul1 10451 frecuzrdgtcl 10486 frecuzrdgfunlem 10493 fzfig 10504 seqf1og 10595 m1expeven 10660 qsqeqor 10724 caucvgrelemcau 11127 rexico 11368 fisumss 11538 fsum2dlemstep 11580 ntrivcvgap 11694 fprodssdc 11736 fprod2dlemstep 11768 0dvds 11957 alzdvds 11999 opoe 12039 omoe 12040 opeo 12041 omeo 12042 m1exp1 12045 nn0enne 12046 nn0o1gt2 12049 gcdneg 12122 dfgcd2 12154 algcvgblem 12190 algcvga 12192 eucalglt 12198 coprmdvds 12233 divgcdcoprmex 12243 cncongr1 12244 prm2orodd 12267 prm23lt5 12404 pockthi 12499 f1ocpbl 12897 f1ovscpbl 12898 f1olecpbl 12899 ismnddef 13002 lmodfopnelem1 13823 tg2 14239 tgcl 14243 neii1 14326 neii2 14328 txlm 14458 reopnap 14725 tgioo 14733 addcncntoplem 14740 gausslemma2dlem0i 15214 2lgslem2 15249 2lgs 15261 2lgsoddprmlem3 15268 bj-elssuniab 15353 bj-nn0sucALT 15540 triap 15589 |
Copyright terms: Public domain | W3C validator |