![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrdi | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
biimtrdi.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
biimtrdi.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
biimtrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrdi.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | biimtrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.33bdc 1630 ax11i 1714 equveli 1759 eupickbi 2108 nfabdw 2338 rgen2a 2531 reu6 2928 sseq0 3466 disjel 3479 preq12b 3772 prel12 3773 prneimg 3776 elinti 3855 exmidundif 4208 opthreg 4557 elreldm 4855 issref 5013 relcnvtr 5150 relresfld 5160 funopg 5252 funimass2 5296 f0dom0 5411 fvimacnv 5634 elunirn 5770 oprabid 5910 op1steq 6183 f1o2ndf1 6232 reldmtpos 6257 rntpos 6261 nntri3or 6497 nnaordex 6532 nnawordex 6533 findcard2 6892 findcard2s 6893 mkvprop 7159 cc2lem 7268 lt2addnq 7406 lt2mulnq 7407 genpelvl 7514 genpelvu 7515 distrlem5prl 7588 distrlem5pru 7589 caucvgprlemnkj 7668 map2psrprg 7807 rereceu 7891 ltxrlt 8026 0mnnnnn0 9211 elnnnn0b 9223 nn0le2is012 9338 btwnz 9375 uz11 9553 nn01to3 9620 zq 9629 xrltso 9799 xltnegi 9838 xnn0lenn0nn0 9868 xnn0xadd0 9870 iccleub 9934 fzdcel 10043 uznfz 10106 2ffzeq 10144 elfzonlteqm1 10213 icogelb 10269 flqeqceilz 10321 modqadd1 10364 modqmul1 10380 frecuzrdgtcl 10415 frecuzrdgfunlem 10422 fzfig 10433 m1expeven 10570 qsqeqor 10634 caucvgrelemcau 10992 rexico 11233 fisumss 11403 fsum2dlemstep 11445 ntrivcvgap 11559 fprodssdc 11601 fprod2dlemstep 11633 0dvds 11821 alzdvds 11863 opoe 11903 omoe 11904 opeo 11905 omeo 11906 m1exp1 11909 nn0enne 11910 nn0o1gt2 11913 gcdneg 11986 dfgcd2 12018 algcvgblem 12052 algcvga 12054 eucalglt 12060 coprmdvds 12095 divgcdcoprmex 12105 cncongr1 12106 prm2orodd 12129 prm23lt5 12266 pockthi 12359 f1ocpbl 12738 f1ovscpbl 12739 f1olecpbl 12740 ismnddef 12825 lmodfopnelem1 13420 tg2 13700 tgcl 13704 neii1 13787 neii2 13789 txlm 13919 reopnap 14178 tgioo 14186 addcncntoplem 14191 2lgsoddprmlem3 14599 bj-elssuniab 14683 bj-nn0sucALT 14870 triap 14918 |
Copyright terms: Public domain | W3C validator |