| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrdi | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| biimtrdi.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| biimtrdi.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| biimtrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrdi.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | biimtrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.33bdc 1644 ax11i 1728 equveli 1773 eupickbi 2127 nfabdw 2358 rgen2a 2551 reu6 2953 sseq0 3493 disjel 3506 preq12b 3801 prel12 3802 prneimg 3805 elinti 3884 exmidundif 4240 opthreg 4593 elreldm 4893 issref 5053 relcnvtr 5190 relresfld 5200 funopg 5293 funimass2 5337 f0dom0 5454 fvimacnv 5680 elunirn 5816 oprabid 5957 op1steq 6246 f1o2ndf1 6295 reldmtpos 6320 rntpos 6324 nntri3or 6560 nnaordex 6595 nnawordex 6596 findcard2 6959 findcard2s 6960 mkvprop 7233 cc2lem 7349 lt2addnq 7488 lt2mulnq 7489 genpelvl 7596 genpelvu 7597 distrlem5prl 7670 distrlem5pru 7671 caucvgprlemnkj 7750 map2psrprg 7889 rereceu 7973 ltxrlt 8109 0mnnnnn0 9298 elnnnn0b 9310 nn0le2is012 9425 btwnz 9462 uz11 9641 nn01to3 9708 zq 9717 xrltso 9888 xltnegi 9927 xnn0lenn0nn0 9957 xnn0xadd0 9959 iccleub 10023 fzdcel 10132 uznfz 10195 2ffzeq 10233 elfzonlteqm1 10303 icogelb 10372 flqeqceilz 10427 modqadd1 10470 modqmul1 10486 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 fzfig 10539 seqf1og 10630 m1expeven 10695 qsqeqor 10759 caucvgrelemcau 11162 rexico 11403 fisumss 11574 fsum2dlemstep 11616 ntrivcvgap 11730 fprodssdc 11772 fprod2dlemstep 11804 0dvds 11993 alzdvds 12036 opoe 12077 omoe 12078 opeo 12079 omeo 12080 m1exp1 12083 nn0enne 12084 nn0o1gt2 12087 gcdneg 12174 dfgcd2 12206 algcvgblem 12242 algcvga 12244 eucalglt 12250 coprmdvds 12285 divgcdcoprmex 12295 cncongr1 12296 prm2orodd 12319 prm23lt5 12457 pockthi 12552 f1ocpbl 13013 f1ovscpbl 13014 f1olecpbl 13015 ismnddef 13120 lmodfopnelem1 13956 tg2 14380 tgcl 14384 neii1 14467 neii2 14469 txlm 14599 reopnap 14866 tgioo 14874 addcncntoplem 14881 gausslemma2dlem0i 15382 2lgslem2 15417 2lgs 15429 2lgsoddprmlem3 15436 bj-elssuniab 15521 bj-nn0sucALT 15708 triap 15760 |
| Copyright terms: Public domain | W3C validator |