| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrdi | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| biimtrdi.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| biimtrdi.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| biimtrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrdi.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | biimtrdi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.33bdc 1644 ax11i 1728 equveli 1773 eupickbi 2127 nfabdw 2358 rgen2a 2551 reu6 2953 sseq0 3492 disjel 3505 preq12b 3800 prel12 3801 prneimg 3804 elinti 3883 exmidundif 4239 opthreg 4592 elreldm 4892 issref 5052 relcnvtr 5189 relresfld 5199 funopg 5292 funimass2 5336 f0dom0 5451 fvimacnv 5677 elunirn 5813 oprabid 5954 op1steq 6237 f1o2ndf1 6286 reldmtpos 6311 rntpos 6315 nntri3or 6551 nnaordex 6586 nnawordex 6587 findcard2 6950 findcard2s 6951 mkvprop 7224 cc2lem 7333 lt2addnq 7471 lt2mulnq 7472 genpelvl 7579 genpelvu 7580 distrlem5prl 7653 distrlem5pru 7654 caucvgprlemnkj 7733 map2psrprg 7872 rereceu 7956 ltxrlt 8092 0mnnnnn0 9281 elnnnn0b 9293 nn0le2is012 9408 btwnz 9445 uz11 9624 nn01to3 9691 zq 9700 xrltso 9871 xltnegi 9910 xnn0lenn0nn0 9940 xnn0xadd0 9942 iccleub 10006 fzdcel 10115 uznfz 10178 2ffzeq 10216 elfzonlteqm1 10286 icogelb 10355 flqeqceilz 10410 modqadd1 10453 modqmul1 10469 frecuzrdgtcl 10504 frecuzrdgfunlem 10511 fzfig 10522 seqf1og 10613 m1expeven 10678 qsqeqor 10742 caucvgrelemcau 11145 rexico 11386 fisumss 11557 fsum2dlemstep 11599 ntrivcvgap 11713 fprodssdc 11755 fprod2dlemstep 11787 0dvds 11976 alzdvds 12019 opoe 12060 omoe 12061 opeo 12062 omeo 12063 m1exp1 12066 nn0enne 12067 nn0o1gt2 12070 gcdneg 12149 dfgcd2 12181 algcvgblem 12217 algcvga 12219 eucalglt 12225 coprmdvds 12260 divgcdcoprmex 12270 cncongr1 12271 prm2orodd 12294 prm23lt5 12432 pockthi 12527 f1ocpbl 12954 f1ovscpbl 12955 f1olecpbl 12956 ismnddef 13059 lmodfopnelem1 13880 tg2 14296 tgcl 14300 neii1 14383 neii2 14385 txlm 14515 reopnap 14782 tgioo 14790 addcncntoplem 14797 gausslemma2dlem0i 15298 2lgslem2 15333 2lgs 15345 2lgsoddprmlem3 15352 bj-elssuniab 15437 bj-nn0sucALT 15624 triap 15673 |
| Copyright terms: Public domain | W3C validator |