Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcimgft | GIF version |
Description: A closed version of spcimgf 2806. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimgft.1 | ⊢ Ⅎ𝑥𝜓 |
spcimgft.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
spcimgft | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | spcimgft.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | issetf 2733 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
4 | exim 1587 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜑 → 𝜓))) | |
5 | 3, 4 | syl5bi 151 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ V → ∃𝑥(𝜑 → 𝜓))) |
6 | spcimgft.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
7 | 6 | 19.36-1 1661 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) |
8 | 5, 7 | syl6 33 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓))) |
9 | 1, 8 | syl5 32 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 = wceq 1343 Ⅎwnf 1448 ∃wex 1480 ∈ wcel 2136 Ⅎwnfc 2295 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: spcgft 2803 spcimgf 2806 spcimdv 2810 |
Copyright terms: Public domain | W3C validator |