ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimgft GIF version

Theorem spcimgft 2802
Description: A closed version of spcimgf 2806. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1 𝑥𝜓
spcimgft.2 𝑥𝐴
Assertion
Ref Expression
spcimgft (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))

Proof of Theorem spcimgft
StepHypRef Expression
1 elex 2737 . 2 (𝐴𝐵𝐴 ∈ V)
2 spcimgft.2 . . . . 5 𝑥𝐴
32issetf 2733 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 exim 1587 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜑𝜓)))
53, 4syl5bi 151 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ V → ∃𝑥(𝜑𝜓)))
6 spcimgft.1 . . . 4 𝑥𝜓
7619.36-1 1661 . . 3 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
85, 7syl6 33 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ V → (∀𝑥𝜑𝜓)))
91, 8syl5 32 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341   = wceq 1343  wnf 1448  wex 1480  wcel 2136  wnfc 2295  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  spcgft  2803  spcimgf  2806  spcimdv  2810
  Copyright terms: Public domain W3C validator