Proof of Theorem eqvincg
| Step | Hyp | Ref
| Expression |
| 1 | | elisset 2777 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| 2 | | ax-1 6 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐴 = 𝐵 → 𝑥 = 𝐴)) |
| 3 | | eqtr 2214 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝐴 = 𝐵) → 𝑥 = 𝐵) |
| 4 | 3 | ex 115 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐴 = 𝐵 → 𝑥 = 𝐵)) |
| 5 | 2, 4 | jca 306 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵))) |
| 6 | 5 | eximi 1614 |
. . . 4
⊢
(∃𝑥 𝑥 = 𝐴 → ∃𝑥((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵))) |
| 7 | | pm3.43 602 |
. . . . 5
⊢ (((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵)) → (𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
| 8 | 7 | eximi 1614 |
. . . 4
⊢
(∃𝑥((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵)) → ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
| 9 | 1, 6, 8 | 3syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
| 10 | | nfv 1542 |
. . . 4
⊢
Ⅎ𝑥 𝐴 = 𝐵 |
| 11 | 10 | 19.37-1 1688 |
. . 3
⊢
(∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) → (𝐴 = 𝐵 → ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
| 12 | 9, 11 | syl 14 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
| 13 | | eqtr2 2215 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → 𝐴 = 𝐵) |
| 14 | 13 | exlimiv 1612 |
. 2
⊢
(∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → 𝐴 = 𝐵) |
| 15 | 12, 14 | impbid1 142 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |