ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimegft GIF version

Theorem spcimegft 2838
Description: A closed version of spcimegf 2841. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1 𝑥𝜓
spcimgft.2 𝑥𝐴
Assertion
Ref Expression
spcimegft (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))

Proof of Theorem spcimegft
StepHypRef Expression
1 elex 2771 . 2 (𝐴𝐵𝐴 ∈ V)
2 spcimgft.2 . . . . 5 𝑥𝐴
32issetf 2767 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 exim 1610 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓𝜑)))
53, 4biimtrid 152 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴 ∈ V → ∃𝑥(𝜓𝜑)))
6 spcimgft.1 . . . 4 𝑥𝜓
7619.37-1 1685 . . 3 (∃𝑥(𝜓𝜑) → (𝜓 → ∃𝑥𝜑))
85, 7syl6 33 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)))
91, 8syl5 32 1 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362   = wceq 1364  wnf 1471  wex 1503  wcel 2164  wnfc 2323  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  spcegft  2839  spcimegf  2841  spcimedv  2846
  Copyright terms: Public domain W3C validator