| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcimegft | GIF version | ||
| Description: A closed version of spcimegf 2845. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| spcimgft.1 | ⊢ Ⅎ𝑥𝜓 |
| spcimgft.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| spcimegft | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | spcimgft.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | issetf 2770 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| 4 | exim 1613 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓 → 𝜑))) | |
| 5 | 3, 4 | biimtrid 152 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (𝐴 ∈ V → ∃𝑥(𝜓 → 𝜑))) |
| 6 | spcimgft.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 7 | 6 | 19.37-1 1688 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜑) → (𝜓 → ∃𝑥𝜑)) |
| 8 | 5, 7 | syl6 33 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑))) |
| 9 | 1, 8 | syl5 32 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 ∈ wcel 2167 Ⅎwnfc 2326 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: spcegft 2843 spcimegf 2845 spcimedv 2850 |
| Copyright terms: Public domain | W3C validator |