ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimegft GIF version

Theorem spcimegft 2808
Description: A closed version of spcimegf 2811. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1 𝑥𝜓
spcimgft.2 𝑥𝐴
Assertion
Ref Expression
spcimegft (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))

Proof of Theorem spcimegft
StepHypRef Expression
1 elex 2741 . 2 (𝐴𝐵𝐴 ∈ V)
2 spcimgft.2 . . . . 5 𝑥𝐴
32issetf 2737 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 exim 1592 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓𝜑)))
53, 4syl5bi 151 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴 ∈ V → ∃𝑥(𝜓𝜑)))
6 spcimgft.1 . . . 4 𝑥𝜓
7619.37-1 1667 . . 3 (∃𝑥(𝜓𝜑) → (𝜓 → ∃𝑥𝜑))
85, 7syl6 33 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)))
91, 8syl5 32 1 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346   = wceq 1348  wnf 1453  wex 1485  wcel 2141  wnfc 2299  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  spcegft  2809  spcimegf  2811  spcimedv  2816
  Copyright terms: Public domain W3C validator