| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 | ⊢ (𝜓 ↔ 𝜑) |
| biimtrrid.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| biimtrrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | biimtrrid.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1698 mo3h 2108 necon1bidc 2429 necon4aidc 2445 r19.30dc 2654 ceqex 2904 ssdisj 3521 ralidm 3565 exmid1dc 4252 rexxfrd 4518 sucprcreg 4605 imain 5365 f0rn0 5482 funopfv 5631 mpteqb 5683 funfvima 5829 fliftfun 5878 iinerm 6707 eroveu 6726 th3qlem1 6737 updjudhf 7196 elni2 7447 genpdisj 7656 lttri3 8172 seqf1og 10688 nn0ltexp2 10876 zfz1iso 11008 cau3lem 11500 maxleast 11599 rexanre 11606 climcau 11733 summodc 11769 mertenslem2 11922 prodmodclem2 11963 prodmodc 11964 fprodseq 11969 bitsfzolem 12340 bitsfzo 12341 divgcdcoprmex 12499 prmind2 12517 pcqmul 12701 pcxcl 12709 pcadd 12738 mul4sq 12792 issubg2m 13600 dvdsrtr 13938 unitgrp 13953 subrgintm 14080 islssm 14194 znidom 14494 opnneiid 14711 txuni2 14803 txbas 14805 txbasval 14814 txlm 14826 blin2 14979 tgqioo 15102 plyadd 15298 plymul 15299 lgsquad2lem2 15634 2sqlem5 15671 bj-charfunr 15884 |
| Copyright terms: Public domain | W3C validator |