![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrrid | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biimtrrid.1 | ⊢ (𝜓 ↔ 𝜑) |
biimtrrid.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
biimtrrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrrid.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜓) |
3 | biimtrrid.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 19.37-1 1684 mo3h 2090 necon1bidc 2411 necon4aidc 2427 r19.30dc 2636 ceqex 2878 ssdisj 3493 ralidm 3537 exmid1dc 4214 rexxfrd 4477 sucprcreg 4562 imain 5312 f0rn0 5424 funopfv 5570 mpteqb 5621 funfvima 5763 fliftfun 5812 iinerm 6624 eroveu 6643 th3qlem1 6654 updjudhf 7095 elni2 7330 genpdisj 7539 lttri3 8054 nn0ltexp2 10706 zfz1iso 10838 cau3lem 11140 maxleast 11239 rexanre 11246 climcau 11372 summodc 11408 mertenslem2 11561 prodmodclem2 11602 prodmodc 11603 fprodseq 11608 divgcdcoprmex 12119 prmind2 12137 pcqmul 12320 pcxcl 12328 pcadd 12356 mul4sq 12409 issubg2m 13093 dvdsrtr 13411 unitgrp 13426 subrgintm 13550 islssm 13633 opnneiid 14047 txuni2 14139 txbas 14141 txbasval 14150 txlm 14162 blin2 14315 tgqioo 14430 2sqlem5 14849 bj-charfunr 14945 |
Copyright terms: Public domain | W3C validator |