![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrrid | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biimtrrid.1 | ⊢ (𝜓 ↔ 𝜑) |
biimtrrid.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
biimtrrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrrid.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜓) |
3 | biimtrrid.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 19.37-1 1674 mo3h 2079 necon1bidc 2399 necon4aidc 2415 r19.30dc 2624 ceqex 2866 ssdisj 3481 ralidm 3525 exmid1dc 4202 rexxfrd 4465 sucprcreg 4550 imain 5300 f0rn0 5412 funopfv 5558 mpteqb 5609 funfvima 5751 fliftfun 5800 iinerm 6610 eroveu 6629 th3qlem1 6640 updjudhf 7081 elni2 7316 genpdisj 7525 lttri3 8040 nn0ltexp2 10692 zfz1iso 10824 cau3lem 11126 maxleast 11225 rexanre 11232 climcau 11358 summodc 11394 mertenslem2 11547 prodmodclem2 11588 prodmodc 11589 fprodseq 11594 divgcdcoprmex 12105 prmind2 12123 pcqmul 12306 pcxcl 12314 pcadd 12342 mul4sq 12395 issubg2m 13063 dvdsrtr 13308 unitgrp 13323 subrgintm 13402 opnneiid 13852 txuni2 13944 txbas 13946 txbasval 13955 txlm 13967 blin2 14120 tgqioo 14235 2sqlem5 14654 bj-charfunr 14750 |
Copyright terms: Public domain | W3C validator |