![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrrid | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biimtrrid.1 | ⊢ (𝜓 ↔ 𝜑) |
biimtrrid.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
biimtrrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrrid.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜓) |
3 | biimtrrid.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 19.37-1 1674 mo3h 2079 necon1bidc 2399 necon4aidc 2415 r19.30dc 2624 ceqex 2864 ssdisj 3479 ralidm 3523 exmid1dc 4200 rexxfrd 4463 sucprcreg 4548 imain 5298 f0rn0 5410 funopfv 5555 mpteqb 5606 funfvima 5748 fliftfun 5796 iinerm 6606 eroveu 6625 th3qlem1 6636 updjudhf 7077 elni2 7312 genpdisj 7521 lttri3 8036 nn0ltexp2 10688 zfz1iso 10820 cau3lem 11122 maxleast 11221 rexanre 11228 climcau 11354 summodc 11390 mertenslem2 11543 prodmodclem2 11584 prodmodc 11585 fprodseq 11590 divgcdcoprmex 12101 prmind2 12119 pcqmul 12302 pcxcl 12310 pcadd 12338 mul4sq 12391 issubg2m 13047 dvdsrtr 13268 unitgrp 13283 subrgintm 13362 opnneiid 13634 txuni2 13726 txbas 13728 txbasval 13737 txlm 13749 blin2 13902 tgqioo 14017 2sqlem5 14436 bj-charfunr 14532 |
Copyright terms: Public domain | W3C validator |