| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 | ⊢ (𝜓 ↔ 𝜑) |
| biimtrrid.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| biimtrrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | biimtrrid.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1696 mo3h 2106 necon1bidc 2427 necon4aidc 2443 r19.30dc 2652 ceqex 2899 ssdisj 3516 ralidm 3560 exmid1dc 4243 rexxfrd 4508 sucprcreg 4595 imain 5350 f0rn0 5464 funopfv 5612 mpteqb 5664 funfvima 5806 fliftfun 5855 iinerm 6684 eroveu 6703 th3qlem1 6714 updjudhf 7163 elni2 7409 genpdisj 7618 lttri3 8134 seqf1og 10647 nn0ltexp2 10835 zfz1iso 10967 cau3lem 11344 maxleast 11443 rexanre 11450 climcau 11577 summodc 11613 mertenslem2 11766 prodmodclem2 11807 prodmodc 11808 fprodseq 11813 bitsfzolem 12184 bitsfzo 12185 divgcdcoprmex 12343 prmind2 12361 pcqmul 12545 pcxcl 12553 pcadd 12582 mul4sq 12636 issubg2m 13443 dvdsrtr 13781 unitgrp 13796 subrgintm 13923 islssm 14037 znidom 14337 opnneiid 14554 txuni2 14646 txbas 14648 txbasval 14657 txlm 14669 blin2 14822 tgqioo 14945 plyadd 15141 plymul 15142 lgsquad2lem2 15477 2sqlem5 15514 bj-charfunr 15610 |
| Copyright terms: Public domain | W3C validator |