| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 | ⊢ (𝜓 ↔ 𝜑) |
| biimtrrid.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| biimtrrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | biimtrrid.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1696 mo3h 2106 necon1bidc 2427 necon4aidc 2443 r19.30dc 2652 ceqex 2899 ssdisj 3516 ralidm 3560 exmid1dc 4243 rexxfrd 4509 sucprcreg 4596 imain 5355 f0rn0 5469 funopfv 5617 mpteqb 5669 funfvima 5815 fliftfun 5864 iinerm 6693 eroveu 6712 th3qlem1 6723 updjudhf 7180 elni2 7426 genpdisj 7635 lttri3 8151 seqf1og 10664 nn0ltexp2 10852 zfz1iso 10984 cau3lem 11367 maxleast 11466 rexanre 11473 climcau 11600 summodc 11636 mertenslem2 11789 prodmodclem2 11830 prodmodc 11831 fprodseq 11836 bitsfzolem 12207 bitsfzo 12208 divgcdcoprmex 12366 prmind2 12384 pcqmul 12568 pcxcl 12576 pcadd 12605 mul4sq 12659 issubg2m 13467 dvdsrtr 13805 unitgrp 13820 subrgintm 13947 islssm 14061 znidom 14361 opnneiid 14578 txuni2 14670 txbas 14672 txbasval 14681 txlm 14693 blin2 14846 tgqioo 14969 plyadd 15165 plymul 15166 lgsquad2lem2 15501 2sqlem5 15538 bj-charfunr 15679 |
| Copyright terms: Public domain | W3C validator |