| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 | ⊢ (𝜓 ↔ 𝜑) |
| biimtrrid.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| biimtrrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | biimtrrid.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1720 mo3h 2131 necon1bidc 2452 necon4aidc 2468 r19.30dc 2678 ceqex 2930 ssdisj 3548 ralidm 3592 exmid1dc 4283 rexxfrd 4553 sucprcreg 4640 imain 5402 f0rn0 5519 funopfv 5670 mpteqb 5724 funfvima 5870 fliftfun 5919 iinerm 6752 eroveu 6771 th3qlem1 6782 updjudhf 7242 elni2 7497 genpdisj 7706 lttri3 8222 seqf1og 10738 nn0ltexp2 10926 zfz1iso 11058 cau3lem 11620 maxleast 11719 rexanre 11726 climcau 11853 summodc 11889 mertenslem2 12042 prodmodclem2 12083 prodmodc 12084 fprodseq 12089 bitsfzolem 12460 bitsfzo 12461 divgcdcoprmex 12619 prmind2 12637 pcqmul 12821 pcxcl 12829 pcadd 12858 mul4sq 12912 issubg2m 13721 dvdsrtr 14059 unitgrp 14074 subrgintm 14201 islssm 14315 znidom 14615 opnneiid 14832 txuni2 14924 txbas 14926 txbasval 14935 txlm 14947 blin2 15100 tgqioo 15223 plyadd 15419 plymul 15420 lgsquad2lem2 15755 2sqlem5 15792 uhgr2edg 15998 bj-charfunr 16131 |
| Copyright terms: Public domain | W3C validator |