| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 | ⊢ (𝜓 ↔ 𝜑) |
| biimtrrid.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| biimtrrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | biimtrrid.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1688 mo3h 2098 necon1bidc 2419 necon4aidc 2435 r19.30dc 2644 ceqex 2891 ssdisj 3508 ralidm 3552 exmid1dc 4234 rexxfrd 4499 sucprcreg 4586 imain 5341 f0rn0 5455 funopfv 5603 mpteqb 5655 funfvima 5797 fliftfun 5846 iinerm 6675 eroveu 6694 th3qlem1 6705 updjudhf 7154 elni2 7400 genpdisj 7609 lttri3 8125 seqf1og 10632 nn0ltexp2 10820 zfz1iso 10952 cau3lem 11298 maxleast 11397 rexanre 11404 climcau 11531 summodc 11567 mertenslem2 11720 prodmodclem2 11761 prodmodc 11762 fprodseq 11767 bitsfzolem 12138 bitsfzo 12139 divgcdcoprmex 12297 prmind2 12315 pcqmul 12499 pcxcl 12507 pcadd 12536 mul4sq 12590 issubg2m 13397 dvdsrtr 13735 unitgrp 13750 subrgintm 13877 islssm 13991 znidom 14291 opnneiid 14508 txuni2 14600 txbas 14602 txbasval 14611 txlm 14623 blin2 14776 tgqioo 14899 plyadd 15095 plymul 15096 lgsquad2lem2 15431 2sqlem5 15468 bj-charfunr 15564 |
| Copyright terms: Public domain | W3C validator |