ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.42h GIF version

Theorem 19.42h 1680
Description: Theorem 19.42 of [Margaris] p. 90. New proofs should use 19.42 1681 instead. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
19.42h.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
19.42h (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))

Proof of Theorem 19.42h
StepHypRef Expression
1 19.42h.1 . . 3 (𝜑 → ∀𝑥𝜑)
2119.41h 1678 . 2 (∃𝑥(𝜓𝜑) ↔ (∃𝑥𝜓𝜑))
3 exancom 1601 . 2 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
4 ancom 264 . 2 ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓𝜑))
52, 3, 43bitr4i 211 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.42v  1899
  Copyright terms: Public domain W3C validator