Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.42h | GIF version |
Description: Theorem 19.42 of [Margaris] p. 90. New proofs should use 19.42 1676 instead. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
19.42h.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
19.42h | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42h.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | 19.41h 1673 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) |
3 | exancom 1596 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
4 | ancom 264 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
5 | 2, 3, 4 | 3bitr4i 211 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.42v 1894 |
Copyright terms: Public domain | W3C validator |