Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > a16nf | GIF version |
Description: If there is only one element in the universe, then everything satisfies Ⅎ. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
a16nf | ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 1699 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
2 | a16g 1844 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | |
3 | 1, 2 | nfd 1503 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1333 Ⅎwnf 1440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 |
This theorem is referenced by: nfsbxy 1922 nfsbxyt 1923 dvelimor 1998 |
Copyright terms: Public domain | W3C validator |