| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > a16nf | GIF version | ||
| Description: If there is only one element in the universe, then everything satisfies Ⅎ. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| a16nf | ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 1765 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
| 2 | a16g 1910 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | |
| 3 | 1, 2 | nfd 1569 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: nfsbxy 1993 nfsbxyt 1994 dvelimor 2069 |
| Copyright terms: Public domain | W3C validator |