| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > a16nf | GIF version | ||
| Description: If there is only one element in the universe, then everything satisfies Ⅎ. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| a16nf | ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 1733 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
| 2 | a16g 1878 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | |
| 3 | 1, 2 | nfd 1537 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: nfsbxy 1961 nfsbxyt 1962 dvelimor 2037 |
| Copyright terms: Public domain | W3C validator |