![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albidv | GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1491 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v 1838 2albidv 1878 sbal1yz 2017 eujust 2044 euf 2047 mo23 2083 axext3 2176 bm1.1 2178 eqeq1 2200 cbvabw 2316 nfceqdf 2335 ralbidv2 2496 alexeq 2887 pm13.183 2899 eqeu 2931 mo2icl 2940 euind 2948 reuind 2966 cdeqal 2975 sbcal 3038 sbcalg 3039 sbcabel 3068 csbcow 3092 csbiebg 3124 ssconb 3293 reldisj 3499 sbcssg 3556 elint 3877 axsep2 4149 zfauscl 4150 bm1.3ii 4151 exmidel 4235 euotd 4284 freq1 4376 freq2 4378 eusv1 4484 ontr2exmid 4558 regexmid 4568 tfisi 4620 nnregexmid 4654 iota5 5237 sbcfung 5279 funimass4 5608 dffo3 5706 eufnfv 5790 dff13 5812 uchoice 6192 tfr1onlemsucfn 6395 tfr1onlemsucaccv 6396 tfr1onlembxssdm 6398 tfr1onlembfn 6399 tfrcllemsucfn 6408 tfrcllemsucaccv 6409 tfrcllembxssdm 6411 tfrcllembfn 6412 tfrcl 6419 frecabcl 6454 ssfiexmid 6934 domfiexmid 6936 diffitest 6945 findcard 6946 findcard2 6947 findcard2s 6948 fiintim 6987 fisseneq 6990 isomni 7197 isomnimap 7198 ismkv 7214 ismkvmap 7215 iswomni 7226 iswomnimap 7227 omniwomnimkv 7228 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 fz1sbc 10165 frecuzrdgtcl 10486 frecuzrdgfunlem 10493 zfz1iso 10915 istopg 14178 bdsep2 15448 bdsepnfALT 15451 bdzfauscl 15452 bdbm1.3ii 15453 bj-2inf 15500 bj-nn0sucALT 15540 sscoll2 15550 |
Copyright terms: Public domain | W3C validator |