| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albidv | GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1526 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1873 2albidv 1913 sbal1yz 2052 eujust 2079 euf 2082 mo23 2119 axext3 2212 bm1.1 2214 eqeq1 2236 cbvabw 2352 nfceqdf 2371 ralbidv2 2532 alexeq 2929 pm13.183 2941 eqeu 2973 mo2icl 2982 euind 2990 reuind 3008 cdeqal 3017 sbcal 3080 sbcalg 3081 sbcabel 3111 csbcow 3135 csbiebg 3167 ssconb 3337 reldisj 3543 sbcssg 3600 elint 3928 axsep2 4202 zfauscl 4203 bm1.3ii 4204 exmidel 4288 euotd 4340 freq1 4434 freq2 4436 eusv1 4542 ontr2exmid 4616 regexmid 4626 tfisi 4678 nnregexmid 4712 iota5 5299 sbcfung 5341 funimass4 5683 dffo3 5781 eufnfv 5869 dff13 5891 uchoice 6281 tfr1onlemsucfn 6484 tfr1onlemsucaccv 6485 tfr1onlembxssdm 6487 tfr1onlembfn 6488 tfrcllemsucfn 6497 tfrcllemsucaccv 6498 tfrcllembxssdm 6500 tfrcllembfn 6501 tfrcl 6508 frecabcl 6543 ssfiexmid 7034 domfiexmid 7036 diffitest 7045 findcard 7046 findcard2 7047 findcard2s 7048 fiintim 7089 fisseneq 7092 isomni 7299 isomnimap 7300 ismkv 7316 ismkvmap 7317 iswomni 7328 iswomnimap 7329 omniwomnimkv 7330 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 fz1sbc 10288 frecuzrdgtcl 10629 frecuzrdgfunlem 10636 zfz1iso 11058 istopg 14667 bdsep2 16207 bdsepnfALT 16210 bdzfauscl 16211 bdbm1.3ii 16212 bj-2inf 16259 bj-nn0sucALT 16299 sscoll2 16309 |
| Copyright terms: Public domain | W3C validator |