| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albidv | GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1503 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1850 2albidv 1890 sbal1yz 2029 eujust 2056 euf 2059 mo23 2095 axext3 2188 bm1.1 2190 eqeq1 2212 cbvabw 2328 nfceqdf 2347 ralbidv2 2508 alexeq 2899 pm13.183 2911 eqeu 2943 mo2icl 2952 euind 2960 reuind 2978 cdeqal 2987 sbcal 3050 sbcalg 3051 sbcabel 3080 csbcow 3104 csbiebg 3136 ssconb 3306 reldisj 3512 sbcssg 3569 elint 3891 axsep2 4163 zfauscl 4164 bm1.3ii 4165 exmidel 4249 euotd 4299 freq1 4391 freq2 4393 eusv1 4499 ontr2exmid 4573 regexmid 4583 tfisi 4635 nnregexmid 4669 iota5 5253 sbcfung 5295 funimass4 5629 dffo3 5727 eufnfv 5815 dff13 5837 uchoice 6223 tfr1onlemsucfn 6426 tfr1onlemsucaccv 6427 tfr1onlembxssdm 6429 tfr1onlembfn 6430 tfrcllemsucfn 6439 tfrcllemsucaccv 6440 tfrcllembxssdm 6442 tfrcllembfn 6443 tfrcl 6450 frecabcl 6485 ssfiexmid 6973 domfiexmid 6975 diffitest 6984 findcard 6985 findcard2 6986 findcard2s 6987 fiintim 7028 fisseneq 7031 isomni 7238 isomnimap 7239 ismkv 7255 ismkvmap 7256 iswomni 7267 iswomnimap 7268 omniwomnimkv 7269 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 fz1sbc 10218 frecuzrdgtcl 10557 frecuzrdgfunlem 10564 zfz1iso 10986 istopg 14471 bdsep2 15822 bdsepnfALT 15825 bdzfauscl 15826 bdbm1.3ii 15827 bj-2inf 15874 bj-nn0sucALT 15914 sscoll2 15924 |
| Copyright terms: Public domain | W3C validator |