![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albidv | GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1491 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v 1838 2albidv 1878 sbal1yz 2017 eujust 2044 euf 2047 mo23 2083 axext3 2176 bm1.1 2178 eqeq1 2200 cbvabw 2316 nfceqdf 2335 ralbidv2 2496 alexeq 2886 pm13.183 2898 eqeu 2930 mo2icl 2939 euind 2947 reuind 2965 cdeqal 2974 sbcal 3037 sbcalg 3038 sbcabel 3067 csbcow 3091 csbiebg 3123 ssconb 3292 reldisj 3498 sbcssg 3555 elint 3876 axsep2 4148 zfauscl 4149 bm1.3ii 4150 exmidel 4234 euotd 4283 freq1 4375 freq2 4377 eusv1 4483 ontr2exmid 4557 regexmid 4567 tfisi 4619 nnregexmid 4653 iota5 5236 sbcfung 5278 funimass4 5607 dffo3 5705 eufnfv 5789 dff13 5811 uchoice 6190 tfr1onlemsucfn 6393 tfr1onlemsucaccv 6394 tfr1onlembxssdm 6396 tfr1onlembfn 6397 tfrcllemsucfn 6406 tfrcllemsucaccv 6407 tfrcllembxssdm 6409 tfrcllembfn 6410 tfrcl 6417 frecabcl 6452 ssfiexmid 6932 domfiexmid 6934 diffitest 6943 findcard 6944 findcard2 6945 findcard2s 6946 fiintim 6985 fisseneq 6988 isomni 7195 isomnimap 7196 ismkv 7212 ismkvmap 7213 iswomni 7224 iswomnimap 7225 omniwomnimkv 7226 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 fz1sbc 10162 frecuzrdgtcl 10483 frecuzrdgfunlem 10490 zfz1iso 10912 istopg 14167 bdsep2 15378 bdsepnfALT 15381 bdzfauscl 15382 bdbm1.3ii 15383 bj-2inf 15430 bj-nn0sucALT 15470 sscoll2 15480 |
Copyright terms: Public domain | W3C validator |