Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > albidv | GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1468 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-17 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11v 1815 2albidv 1855 sbal1yz 1989 eujust 2016 euf 2019 mo23 2055 axext3 2148 bm1.1 2150 eqeq1 2172 cbvabw 2289 nfceqdf 2307 ralbidv2 2468 alexeq 2852 pm13.183 2864 eqeu 2896 mo2icl 2905 euind 2913 reuind 2931 cdeqal 2940 sbcal 3002 sbcalg 3003 sbcabel 3032 csbcow 3056 csbiebg 3087 ssconb 3255 reldisj 3460 sbcssg 3518 elint 3830 axsep2 4101 zfauscl 4102 bm1.3ii 4103 exmidel 4184 euotd 4232 freq1 4322 freq2 4324 eusv1 4430 ontr2exmid 4502 regexmid 4512 tfisi 4564 nnregexmid 4598 iota5 5173 sbcfung 5212 funimass4 5537 dffo3 5632 eufnfv 5715 dff13 5736 tfr1onlemsucfn 6308 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfrcllemsucfn 6321 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tfrcllembfn 6325 tfrcl 6332 frecabcl 6367 ssfiexmid 6842 domfiexmid 6844 diffitest 6853 findcard 6854 findcard2 6855 findcard2s 6856 fiintim 6894 fisseneq 6897 isomni 7100 isomnimap 7101 ismkv 7117 ismkvmap 7118 iswomni 7129 iswomnimap 7130 omniwomnimkv 7131 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 fz1sbc 10031 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 zfz1iso 10754 istopg 12637 bdsep2 13768 bdsepnfALT 13771 bdzfauscl 13772 bdbm1.3ii 13773 bj-2inf 13820 bj-nn0sucALT 13860 sscoll2 13870 |
Copyright terms: Public domain | W3C validator |