| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albidv | GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1504 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1851 2albidv 1891 sbal1yz 2030 eujust 2057 euf 2060 mo23 2097 axext3 2190 bm1.1 2192 eqeq1 2214 cbvabw 2330 nfceqdf 2349 ralbidv2 2510 alexeq 2906 pm13.183 2918 eqeu 2950 mo2icl 2959 euind 2967 reuind 2985 cdeqal 2994 sbcal 3057 sbcalg 3058 sbcabel 3088 csbcow 3112 csbiebg 3144 ssconb 3314 reldisj 3520 sbcssg 3577 elint 3905 axsep2 4179 zfauscl 4180 bm1.3ii 4181 exmidel 4265 euotd 4317 freq1 4409 freq2 4411 eusv1 4517 ontr2exmid 4591 regexmid 4601 tfisi 4653 nnregexmid 4687 iota5 5272 sbcfung 5314 funimass4 5652 dffo3 5750 eufnfv 5838 dff13 5860 uchoice 6246 tfr1onlemsucfn 6449 tfr1onlemsucaccv 6450 tfr1onlembxssdm 6452 tfr1onlembfn 6453 tfrcllemsucfn 6462 tfrcllemsucaccv 6463 tfrcllembxssdm 6465 tfrcllembfn 6466 tfrcl 6473 frecabcl 6508 ssfiexmid 6999 domfiexmid 7001 diffitest 7010 findcard 7011 findcard2 7012 findcard2s 7013 fiintim 7054 fisseneq 7057 isomni 7264 isomnimap 7265 ismkv 7281 ismkvmap 7282 iswomni 7293 iswomnimap 7294 omniwomnimkv 7295 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 fz1sbc 10253 frecuzrdgtcl 10594 frecuzrdgfunlem 10601 zfz1iso 11023 istopg 14586 bdsep2 16021 bdsepnfALT 16024 bdzfauscl 16025 bdbm1.3ii 16026 bj-2inf 16073 bj-nn0sucALT 16113 sscoll2 16123 |
| Copyright terms: Public domain | W3C validator |