| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albidv | GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1548 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1502 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-17 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1849 2albidv 1889 sbal1yz 2028 eujust 2055 euf 2058 mo23 2094 axext3 2187 bm1.1 2189 eqeq1 2211 cbvabw 2327 nfceqdf 2346 ralbidv2 2507 alexeq 2898 pm13.183 2910 eqeu 2942 mo2icl 2951 euind 2959 reuind 2977 cdeqal 2986 sbcal 3049 sbcalg 3050 sbcabel 3079 csbcow 3103 csbiebg 3135 ssconb 3305 reldisj 3511 sbcssg 3568 elint 3890 axsep2 4162 zfauscl 4163 bm1.3ii 4164 exmidel 4248 euotd 4298 freq1 4390 freq2 4392 eusv1 4498 ontr2exmid 4572 regexmid 4582 tfisi 4634 nnregexmid 4668 iota5 5252 sbcfung 5294 funimass4 5628 dffo3 5726 eufnfv 5814 dff13 5836 uchoice 6222 tfr1onlemsucfn 6425 tfr1onlemsucaccv 6426 tfr1onlembxssdm 6428 tfr1onlembfn 6429 tfrcllemsucfn 6438 tfrcllemsucaccv 6439 tfrcllembxssdm 6441 tfrcllembfn 6442 tfrcl 6449 frecabcl 6484 ssfiexmid 6972 domfiexmid 6974 diffitest 6983 findcard 6984 findcard2 6985 findcard2s 6986 fiintim 7027 fisseneq 7030 isomni 7237 isomnimap 7238 ismkv 7254 ismkvmap 7255 iswomni 7266 iswomnimap 7267 omniwomnimkv 7268 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 fz1sbc 10217 frecuzrdgtcl 10555 frecuzrdgfunlem 10562 zfz1iso 10984 istopg 14442 bdsep2 15784 bdsepnfALT 15787 bdzfauscl 15788 bdbm1.3ii 15789 bj-2inf 15836 bj-nn0sucALT 15876 sscoll2 15886 |
| Copyright terms: Public domain | W3C validator |