Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2exbidv | GIF version |
Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1813 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
3 | 2 | exbidv 1813 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3exbidv 1857 4exbidv 1858 cbvex4v 1918 ceqsex3v 2768 ceqsex4v 2769 copsexg 4222 euotd 4232 elopab 4236 elxpi 4620 relop 4754 cbvoprab3 5918 ov6g 5979 th3qlem1 6603 ltresr 7780 fisumcom2 11379 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |