ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exbidv GIF version

Theorem 2exbidv 1879
Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
2albidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2exbidv (𝜑 → (∃𝑥𝑦𝜓 ↔ ∃𝑥𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem 2exbidv
StepHypRef Expression
1 2albidv.1 . . 3 (𝜑 → (𝜓𝜒))
21exbidv 1836 . 2 (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒))
32exbidv 1836 1 (𝜑 → (∃𝑥𝑦𝜓 ↔ ∃𝑥𝑦𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  3exbidv  1880  4exbidv  1881  cbvex4v  1946  ceqsex3v  2803  ceqsex4v  2804  copsexg  4274  euotd  4284  elopab  4289  elxpi  4676  relop  4813  cbvoprab3  5995  ov6g  6058  th3qlem1  6693  ltresr  7901  fisumcom2  11584  fprodcom2fi  11772
  Copyright terms: Public domain W3C validator