| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbidv | GIF version | ||
| Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1849 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
| 3 | 2 | exbidv 1849 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbidv 1893 4exbidv 1894 cbvex4v 1959 ceqsex3v 2817 ceqsex4v 2818 copsexg 4295 euotd 4306 elopab 4311 elxpi 4698 relop 4835 cbvoprab3 6033 ov6g 6096 th3qlem1 6736 ltresr 7967 fisumcom2 11819 fprodcom2fi 12007 |
| Copyright terms: Public domain | W3C validator |