![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2exbidv | GIF version |
Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1825 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
3 | 2 | exbidv 1825 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3exbidv 1869 4exbidv 1870 cbvex4v 1930 ceqsex3v 2781 ceqsex4v 2782 copsexg 4246 euotd 4256 elopab 4260 elxpi 4644 relop 4779 cbvoprab3 5953 ov6g 6014 th3qlem1 6639 ltresr 7840 fisumcom2 11448 fprodcom2fi 11636 |
Copyright terms: Public domain | W3C validator |