ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfun GIF version

Theorem qliftfun 6583
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
qliftfun.4 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
qliftfun (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦,𝜑   𝑥,𝑅,𝑦   𝑦,𝐹   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐹(𝑥)

Proof of Theorem qliftfun
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋 ∈ V)
51, 2, 3, 4qliftlem 6579 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
6 eceq1 6536 . . 3 (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅)
7 qliftfun.4 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
81, 5, 2, 6, 7fliftfun 5764 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑋𝑦𝑋 ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
93adantr 274 . . . . . . . . . . 11 ((𝜑𝑥𝑅𝑦) → 𝑅 Er 𝑋)
10 simpr 109 . . . . . . . . . . 11 ((𝜑𝑥𝑅𝑦) → 𝑥𝑅𝑦)
119, 10ercl 6512 . . . . . . . . . 10 ((𝜑𝑥𝑅𝑦) → 𝑥𝑋)
129, 10ercl2 6514 . . . . . . . . . 10 ((𝜑𝑥𝑅𝑦) → 𝑦𝑋)
1311, 12jca 304 . . . . . . . . 9 ((𝜑𝑥𝑅𝑦) → (𝑥𝑋𝑦𝑋))
1413ex 114 . . . . . . . 8 (𝜑 → (𝑥𝑅𝑦 → (𝑥𝑋𝑦𝑋)))
1514pm4.71rd 392 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥𝑋𝑦𝑋) ∧ 𝑥𝑅𝑦)))
163adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 Er 𝑋)
17 simprl 521 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
1816, 17erth 6545 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑅𝑦 ↔ [𝑥]𝑅 = [𝑦]𝑅))
1918pm5.32da 448 . . . . . . 7 (𝜑 → (((𝑥𝑋𝑦𝑋) ∧ 𝑥𝑅𝑦) ↔ ((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅)))
2015, 19bitrd 187 . . . . . 6 (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅)))
2120imbi1d 230 . . . . 5 (𝜑 → ((𝑥𝑅𝑦𝐴 = 𝐵) ↔ (((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵)))
22 impexp 261 . . . . 5 ((((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵) ↔ ((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
2321, 22bitrdi 195 . . . 4 (𝜑 → ((𝑥𝑅𝑦𝐴 = 𝐵) ↔ ((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵))))
24232albidv 1855 . . 3 (𝜑 → (∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵) ↔ ∀𝑥𝑦((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵))))
25 r2al 2485 . . 3 (∀𝑥𝑋𝑦𝑋 ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵) ↔ ∀𝑥𝑦((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
2624, 25bitr4di 197 . 2 (𝜑 → (∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵) ↔ ∀𝑥𝑋𝑦𝑋 ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
278, 26bitr4d 190 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  cop 3579   class class class wbr 3982  cmpt 4043  ran crn 4605  Fun wfun 5182   Er wer 6498  [cec 6499   / cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-er 6501  df-ec 6503  df-qs 6507
This theorem is referenced by:  qliftfund  6584  qliftfuns  6585
  Copyright terms: Public domain W3C validator