ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfun GIF version

Theorem qliftfun 6673
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
qliftfun.4 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
qliftfun (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦,𝜑   𝑥,𝑅,𝑦   𝑦,𝐹   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐹(𝑥)

Proof of Theorem qliftfun
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋 ∈ V)
51, 2, 3, 4qliftlem 6669 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
6 eceq1 6624 . . 3 (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅)
7 qliftfun.4 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
81, 5, 2, 6, 7fliftfun 5840 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑋𝑦𝑋 ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
93adantr 276 . . . . . . . . . . 11 ((𝜑𝑥𝑅𝑦) → 𝑅 Er 𝑋)
10 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥𝑅𝑦) → 𝑥𝑅𝑦)
119, 10ercl 6600 . . . . . . . . . 10 ((𝜑𝑥𝑅𝑦) → 𝑥𝑋)
129, 10ercl2 6602 . . . . . . . . . 10 ((𝜑𝑥𝑅𝑦) → 𝑦𝑋)
1311, 12jca 306 . . . . . . . . 9 ((𝜑𝑥𝑅𝑦) → (𝑥𝑋𝑦𝑋))
1413ex 115 . . . . . . . 8 (𝜑 → (𝑥𝑅𝑦 → (𝑥𝑋𝑦𝑋)))
1514pm4.71rd 394 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥𝑋𝑦𝑋) ∧ 𝑥𝑅𝑦)))
163adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 Er 𝑋)
17 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
1816, 17erth 6635 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑅𝑦 ↔ [𝑥]𝑅 = [𝑦]𝑅))
1918pm5.32da 452 . . . . . . 7 (𝜑 → (((𝑥𝑋𝑦𝑋) ∧ 𝑥𝑅𝑦) ↔ ((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅)))
2015, 19bitrd 188 . . . . . 6 (𝜑 → (𝑥𝑅𝑦 ↔ ((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅)))
2120imbi1d 231 . . . . 5 (𝜑 → ((𝑥𝑅𝑦𝐴 = 𝐵) ↔ (((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵)))
22 impexp 263 . . . . 5 ((((𝑥𝑋𝑦𝑋) ∧ [𝑥]𝑅 = [𝑦]𝑅) → 𝐴 = 𝐵) ↔ ((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
2321, 22bitrdi 196 . . . 4 (𝜑 → ((𝑥𝑅𝑦𝐴 = 𝐵) ↔ ((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵))))
24232albidv 1878 . . 3 (𝜑 → (∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵) ↔ ∀𝑥𝑦((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵))))
25 r2al 2513 . . 3 (∀𝑥𝑋𝑦𝑋 ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵) ↔ ∀𝑥𝑦((𝑥𝑋𝑦𝑋) → ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
2624, 25bitr4di 198 . 2 (𝜑 → (∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵) ↔ ∀𝑥𝑋𝑦𝑋 ([𝑥]𝑅 = [𝑦]𝑅𝐴 = 𝐵)))
278, 26bitr4d 191 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cop 3622   class class class wbr 4030  cmpt 4091  ran crn 4661  Fun wfun 5249   Er wer 6586  [cec 6587   / cqs 6588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-er 6589  df-ec 6591  df-qs 6595
This theorem is referenced by:  qliftfund  6674  qliftfuns  6675
  Copyright terms: Public domain W3C validator