Step | Hyp | Ref
| Expression |
1 | | df-sumdc 11228 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
2 | | nnuz 9453 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
3 | | 1zzd 9173 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
4 | | elnnuz 9454 |
. . . . . 6
⊢ (𝑥 ∈ ℕ ↔ 𝑥 ∈
(ℤ≥‘1)) |
5 | 2 | eqimss2i 3181 |
. . . . . . . . . 10
⊢
(ℤ≥‘1) ⊆ ℕ |
6 | 5 | sseli 3120 |
. . . . . . . . 9
⊢ (𝑥 ∈
(ℤ≥‘1) → 𝑥 ∈ ℕ) |
7 | 6 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ 𝑥 ∈
ℕ) |
8 | | fveq2 5461 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑥 → (𝐺‘𝑛) = (𝐺‘𝑥)) |
9 | 8 | eleq1d 2223 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑥 → ((𝐺‘𝑛) ∈ ℂ ↔ (𝐺‘𝑥) ∈ ℂ)) |
10 | | fsum.1 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) |
11 | | fsum.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℕ) |
12 | | fsum.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) |
13 | | fsum.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
14 | | fsum.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) |
15 | 10, 11, 12, 13, 14 | fsumgcl 11260 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
16 | 15 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
17 | | 1zzd 9173 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → 1 ∈
ℤ) |
18 | 11 | nnzd 9264 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℤ) |
19 | 18 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → 𝑀 ∈ ℤ) |
20 | | eluzelz 9427 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈
(ℤ≥‘1) → 𝑥 ∈ ℤ) |
21 | 20 | ad2antlr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → 𝑥 ∈ ℤ) |
22 | 17, 19, 21 | 3jca 1162 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → (1 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
𝑥 ∈
ℤ)) |
23 | | eluzle 9430 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈
(ℤ≥‘1) → 1 ≤ 𝑥) |
24 | 23 | ad2antlr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → 1 ≤ 𝑥) |
25 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → 𝑥 ≤ 𝑀) |
26 | 24, 25 | jca 304 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑀)) |
27 | | elfz2 9897 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (1 ≤
𝑥 ∧ 𝑥 ≤ 𝑀))) |
28 | 22, 26, 27 | sylanbrc 414 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → 𝑥 ∈ (1...𝑀)) |
29 | 9, 16, 28 | rspcdva 2818 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → (𝐺‘𝑥) ∈ ℂ) |
30 | | 0cnd 7850 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ ¬ 𝑥 ≤ 𝑀) → 0 ∈
ℂ) |
31 | 7 | nnzd 9264 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ 𝑥 ∈
ℤ) |
32 | 18 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ 𝑀 ∈
ℤ) |
33 | | zdcle 9219 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑥 ≤
𝑀) |
34 | 31, 32, 33 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ DECID 𝑥 ≤ 𝑀) |
35 | 29, 30, 34 | ifcldadc 3530 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ if(𝑥 ≤ 𝑀, (𝐺‘𝑥), 0) ∈ ℂ) |
36 | | breq1 3964 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑥 → (𝑛 ≤ 𝑀 ↔ 𝑥 ≤ 𝑀)) |
37 | 36, 8 | ifbieq1d 3523 |
. . . . . . . . 9
⊢ (𝑛 = 𝑥 → if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0) = if(𝑥 ≤ 𝑀, (𝐺‘𝑥), 0)) |
38 | | eqid 2154 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)) |
39 | 37, 38 | fvmptg 5537 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ if(𝑥 ≤ 𝑀, (𝐺‘𝑥), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0))‘𝑥) = if(𝑥 ≤ 𝑀, (𝐺‘𝑥), 0)) |
40 | 7, 35, 39 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0))‘𝑥) = if(𝑥 ≤ 𝑀, (𝐺‘𝑥), 0)) |
41 | 40, 35 | eqeltrd 2231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0))‘𝑥) ∈ ℂ) |
42 | 4, 41 | sylan2b 285 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0))‘𝑥) ∈ ℂ) |
43 | 2, 3, 42 | serf 10351 |
. . . 4
⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛),
0))):ℕ⟶ℂ) |
44 | 43, 11 | ffvelrnd 5596 |
. . 3
⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) ∈ ℂ) |
45 | 44 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) ∈ ℂ) |
46 | | eleq1w 2215 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑗 → (𝑛 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) |
47 | | csbeq1 3030 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑗 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
48 | 46, 47 | ifbieq1d 3523 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑗 → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 0)) |
49 | 48 | cbvmptv 4056 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 0)) |
50 | 13 | ralrimiva 2527 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
51 | | nfcsb1v 3060 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
52 | 51 | nfel1 2307 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
53 | | csbeq1a 3036 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
54 | 53 | eleq1d 2223 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
55 | 52, 54 | rspc 2807 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
56 | 50, 55 | mpan9 279 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
57 | | breq1 3964 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑖 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑖 ≤ (♯‘𝐴))) |
58 | | fveq2 5461 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑖 → (𝑓‘𝑛) = (𝑓‘𝑖)) |
59 | 58 | csbeq1d 3034 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑖 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑖) / 𝑘⦌𝐵) |
60 | | csbco 3037 |
. . . . . . . . . . . . . 14
⊢
⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵 = ⦋(𝑓‘𝑖) / 𝑘⦌𝐵 |
61 | 59, 60 | eqtr4di 2205 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑖 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵) |
62 | 57, 61 | ifbieq1d 3523 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑖 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑖 ≤ (♯‘𝐴), ⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵, 0)) |
63 | 62 | cbvmptv 4056 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑖 ∈ ℕ ↦ if(𝑖 ≤ (♯‘𝐴), ⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵, 0)) |
64 | 49, 56, 63, 63 | summodc 11257 |
. . . . . . . . . 10
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
65 | | eleq1w 2215 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑗 → (𝑢 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) |
66 | 65 | dcbid 824 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑗 → (DECID 𝑢 ∈ 𝐴 ↔ DECID 𝑗 ∈ 𝐴)) |
67 | 66 | cbvralv 2677 |
. . . . . . . . . . . . . 14
⊢
(∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
68 | 67 | 3anbi2i 1174 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑢 ∈ (ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
69 | 68 | rexbii 2461 |
. . . . . . . . . . . 12
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑢 ∈ (ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
70 | | 1zzd 9173 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ ℕ → 1 ∈
ℤ) |
71 | | nnz 9165 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
72 | 70, 71 | fzfigd 10308 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℕ →
(1...𝑚) ∈
Fin) |
73 | | fihasheqf1oi 10639 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...𝑚) ∈ Fin
∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) →
(♯‘(1...𝑚)) =
(♯‘𝐴)) |
74 | 72, 73 | sylan 281 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) →
(♯‘(1...𝑚)) =
(♯‘𝐴)) |
75 | | nnnn0 9076 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
76 | 75 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈ ℕ0) |
77 | | hashfz1 10634 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) |
78 | 76, 77 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) →
(♯‘(1...𝑚)) =
𝑚) |
79 | 74, 78 | eqtr3d 2189 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (♯‘𝐴) = 𝑚) |
80 | 79 | breq2d 3973 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑛 ≤ (♯‘𝐴) ↔ 𝑛 ≤ 𝑚)) |
81 | 80 | ifbid 3522 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
82 | 81 | mpteq2dv 4051 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) |
83 | 82 | seqeq3d 10330 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))) |
84 | 83 | fveq1d 5463 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
85 | 84 | eqeq2d 2166 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
86 | 85 | pm5.32da 448 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
87 | 86 | exbidv 1802 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ →
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
88 | 87 | rexbiia 2469 |
. . . . . . . . . . . 12
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
89 | 69, 88 | orbi12i 754 |
. . . . . . . . . . 11
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑢 ∈ (ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
90 | 89 | mobii 2040 |
. . . . . . . . . 10
⊢
(∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) ↔ ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
91 | 64, 90 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
92 | 91 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
93 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
94 | | f1of 5407 |
. . . . . . . . . . . . . 14
⊢ (𝐹:(1...𝑀)–1-1-onto→𝐴 → 𝐹:(1...𝑀)⟶𝐴) |
95 | 12, 94 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝐴) |
96 | 3, 18 | fzfigd 10308 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
97 | | fex 5687 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin) → 𝐹 ∈ V) |
98 | 95, 96, 97 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ V) |
99 | 11, 2 | eleqtrdi 2247 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
100 | 14 | ralrimiva 2527 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) = 𝐶) |
101 | | nfv 1505 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(𝐺‘𝑛) = 𝐶 |
102 | | nfcsb1v 3060 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐶 |
103 | 102 | nfeq2 2308 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛(𝐺‘𝑘) = ⦋𝑘 / 𝑛⦌𝐶 |
104 | | fveq2 5461 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
105 | | csbeq1a 3036 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → 𝐶 = ⦋𝑘 / 𝑛⦌𝐶) |
106 | 104, 105 | eqeq12d 2169 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → ((𝐺‘𝑛) = 𝐶 ↔ (𝐺‘𝑘) = ⦋𝑘 / 𝑛⦌𝐶)) |
107 | 101, 103,
106 | cbvral 2673 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑛 ∈
(1...𝑀)(𝐺‘𝑛) = 𝐶 ↔ ∀𝑘 ∈ (1...𝑀)(𝐺‘𝑘) = ⦋𝑘 / 𝑛⦌𝐶) |
108 | 100, 107 | sylib 121 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝐺‘𝑘) = ⦋𝑘 / 𝑛⦌𝐶) |
109 | 108 | r19.21bi 2542 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝐺‘𝑘) = ⦋𝑘 / 𝑛⦌𝐶) |
110 | | elfznn 9934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) |
111 | 110 | adantl 275 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℕ) |
112 | | elfzle2 9908 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ≤ 𝑀) |
113 | 112 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ≤ 𝑀) |
114 | 113 | iftrued 3508 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → if(𝑘 ≤ 𝑀, (𝐺‘𝑘), 0) = (𝐺‘𝑘)) |
115 | 104 | eleq1d 2223 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → ((𝐺‘𝑛) ∈ ℂ ↔ (𝐺‘𝑘) ∈ ℂ)) |
116 | 15 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
117 | | simpr 109 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (1...𝑀)) |
118 | 115, 116,
117 | rspcdva 2818 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
119 | 114, 118 | eqeltrd 2231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → if(𝑘 ≤ 𝑀, (𝐺‘𝑘), 0) ∈ ℂ) |
120 | | breq1 3964 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → (𝑛 ≤ 𝑀 ↔ 𝑘 ≤ 𝑀)) |
121 | 120, 104 | ifbieq1d 3523 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0) = if(𝑘 ≤ 𝑀, (𝐺‘𝑘), 0)) |
122 | 121, 38 | fvmptg 5537 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ if(𝑘 ≤ 𝑀, (𝐺‘𝑘), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0))‘𝑘) = if(𝑘 ≤ 𝑀, (𝐺‘𝑘), 0)) |
123 | 111, 119,
122 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0))‘𝑘) = if(𝑘 ≤ 𝑀, (𝐺‘𝑘), 0)) |
124 | 123, 114 | eqtrd 2187 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0))‘𝑘) = (𝐺‘𝑘)) |
125 | 113 | iftrued 3508 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → if(𝑘 ≤ 𝑀, ⦋𝑘 / 𝑛⦌𝐶, 0) = ⦋𝑘 / 𝑛⦌𝐶) |
126 | 95 | ffvelrnda 5595 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐹‘𝑛) ∈ 𝐴) |
127 | 10 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹‘𝑛)) → 𝐵 = 𝐶) |
128 | 126, 127 | csbied 3073 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐶) |
129 | 50 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
130 | | nfcsb1v 3060 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 |
131 | 130 | nfel1 2307 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ |
132 | | csbeq1a 3036 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
133 | 132 | eleq1d 2223 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝐹‘𝑛) → (𝐵 ∈ ℂ ↔ ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) |
134 | 131, 133 | rspc 2807 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ)) |
135 | 126, 129,
134 | sylc 62 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ℂ) |
136 | 128, 135 | eqeltrrd 2232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ) |
137 | 136 | ralrimiva 2527 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)𝐶 ∈ ℂ) |
138 | | nfv 1505 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘 𝐶 ∈ ℂ |
139 | 102 | nfel1 2307 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐶 ∈ ℂ |
140 | 105 | eleq1d 2223 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑘 → (𝐶 ∈ ℂ ↔ ⦋𝑘 / 𝑛⦌𝐶 ∈ ℂ)) |
141 | 138, 139,
140 | cbvral 2673 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑛 ∈
(1...𝑀)𝐶 ∈ ℂ ↔ ∀𝑘 ∈ (1...𝑀)⦋𝑘 / 𝑛⦌𝐶 ∈ ℂ) |
142 | 137, 141 | sylib 121 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)⦋𝑘 / 𝑛⦌𝐶 ∈ ℂ) |
143 | 142 | r19.21bi 2542 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ⦋𝑘 / 𝑛⦌𝐶 ∈ ℂ) |
144 | 125, 143 | eqeltrd 2231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → if(𝑘 ≤ 𝑀, ⦋𝑘 / 𝑛⦌𝐶, 0) ∈ ℂ) |
145 | | nfcv 2296 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛𝑘 |
146 | | nfv 1505 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛 𝑘 ≤ 𝑀 |
147 | | nfcv 2296 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛0 |
148 | 146, 102,
147 | nfif 3529 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛if(𝑘 ≤ 𝑀, ⦋𝑘 / 𝑛⦌𝐶, 0) |
149 | 120, 105 | ifbieq1d 3523 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → if(𝑛 ≤ 𝑀, 𝐶, 0) = if(𝑘 ≤ 𝑀, ⦋𝑘 / 𝑛⦌𝐶, 0)) |
150 | | eqid 2154 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0)) |
151 | 145, 148,
149, 150 | fvmptf 5553 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ if(𝑘 ≤ 𝑀, ⦋𝑘 / 𝑛⦌𝐶, 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0))‘𝑘) = if(𝑘 ≤ 𝑀, ⦋𝑘 / 𝑛⦌𝐶, 0)) |
152 | 111, 144,
151 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0))‘𝑘) = if(𝑘 ≤ 𝑀, ⦋𝑘 / 𝑛⦌𝐶, 0)) |
153 | 152, 125 | eqtrd 2187 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0))‘𝑘) = ⦋𝑘 / 𝑛⦌𝐶) |
154 | 109, 124,
153 | 3eqtr4d 2197 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0))‘𝑘) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0))‘𝑘)) |
155 | 137 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → ∀𝑛 ∈ (1...𝑀)𝐶 ∈ ℂ) |
156 | | nfcsb1v 3060 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑛⦋𝑥 / 𝑛⦌𝐶 |
157 | 156 | nfel1 2307 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛⦋𝑥 / 𝑛⦌𝐶 ∈ ℂ |
158 | | csbeq1a 3036 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑥 → 𝐶 = ⦋𝑥 / 𝑛⦌𝐶) |
159 | 158 | eleq1d 2223 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑥 → (𝐶 ∈ ℂ ↔ ⦋𝑥 / 𝑛⦌𝐶 ∈ ℂ)) |
160 | 157, 159 | rspc 2807 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑀) → (∀𝑛 ∈ (1...𝑀)𝐶 ∈ ℂ → ⦋𝑥 / 𝑛⦌𝐶 ∈ ℂ)) |
161 | 28, 155, 160 | sylc 62 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
∧ 𝑥 ≤ 𝑀) → ⦋𝑥 / 𝑛⦌𝐶 ∈ ℂ) |
162 | 161, 30, 34 | ifcldadc 3530 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ if(𝑥 ≤ 𝑀, ⦋𝑥 / 𝑛⦌𝐶, 0) ∈ ℂ) |
163 | | nfcv 2296 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛𝑥 |
164 | | nfv 1505 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛 𝑥 ≤ 𝑀 |
165 | 164, 156,
147 | nfif 3529 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛if(𝑥 ≤ 𝑀, ⦋𝑥 / 𝑛⦌𝐶, 0) |
166 | 36, 158 | ifbieq1d 3523 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑥 → if(𝑛 ≤ 𝑀, 𝐶, 0) = if(𝑥 ≤ 𝑀, ⦋𝑥 / 𝑛⦌𝐶, 0)) |
167 | 163, 165,
166, 150 | fvmptf 5553 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℕ ∧ if(𝑥 ≤ 𝑀, ⦋𝑥 / 𝑛⦌𝐶, 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0))‘𝑥) = if(𝑥 ≤ 𝑀, ⦋𝑥 / 𝑛⦌𝐶, 0)) |
168 | 7, 162, 167 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑀, 𝐶, 0))‘𝑥) = if(𝑥 ≤ 𝑀, ⦋𝑥 / 𝑛⦌𝐶, 0)) |
169 | 168, 162 | eqeltrd 2231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑀, 𝐶, 0))‘𝑥) ∈ ℂ) |
170 | | addcl 7836 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
171 | 170 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
172 | 99, 154, 41, 169, 171 | seq3fveq 10348 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0)))‘𝑀)) |
173 | 12, 172 | jca 304 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0)))‘𝑀))) |
174 | | f1oeq1 5396 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → (𝑓:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐹:(1...𝑀)–1-1-onto→𝐴)) |
175 | | fveq1 5460 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝐹 → (𝑓‘𝑛) = (𝐹‘𝑛)) |
176 | 175 | csbeq1d 3034 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝐹 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
177 | | vex 2712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑓 ∈ V |
178 | | vex 2712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑛 ∈ V |
179 | 177, 178 | fvex 5481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓‘𝑛) ∈ V |
180 | 175, 179 | eqeltrrdi 2246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝐹 → (𝐹‘𝑛) ∈ V) |
181 | 10 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 = 𝐹 ∧ 𝑘 = (𝐹‘𝑛)) → 𝐵 = 𝐶) |
182 | 180, 181 | csbied 3073 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝐹 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐶) |
183 | 176, 182 | eqtrd 2187 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝐹 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = 𝐶) |
184 | 183 | ifeq1d 3518 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝐹 → if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑛 ≤ 𝑀, 𝐶, 0)) |
185 | 184 | mpteq2dv 4051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝐹 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0))) |
186 | 185 | seqeq3d 10330 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝐹 → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0)))) |
187 | 186 | fveq1d 5463 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝐹 → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0)))‘𝑀)) |
188 | 187 | eqeq2d 2166 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → ((seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀) ↔ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0)))‘𝑀))) |
189 | 174, 188 | anbi12d 465 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → ((𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀)) ↔ (𝐹:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0)))‘𝑀)))) |
190 | 189 | spcegv 2797 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ V → ((𝐹:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, 𝐶, 0)))‘𝑀)) → ∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀)))) |
191 | 98, 173, 190 | sylc 62 |
. . . . . . . . . . 11
⊢ (𝜑 → ∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀))) |
192 | | oveq2 5822 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀)) |
193 | | f1oeq2 5397 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑚) =
(1...𝑀) → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑀)–1-1-onto→𝐴)) |
194 | 192, 193 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑀 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑀)–1-1-onto→𝐴)) |
195 | | breq2 3965 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑀 → (𝑛 ≤ 𝑚 ↔ 𝑛 ≤ 𝑀)) |
196 | 195 | ifbid 3522 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑀 → if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
197 | 196 | mpteq2dv 4051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑀 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) |
198 | 197 | seqeq3d 10330 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑀 → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))) |
199 | | id 19 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) |
200 | 198, 199 | fveq12d 5468 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑀 → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀)) |
201 | 200 | eqeq2d 2166 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑀 → ((seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) ↔ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀))) |
202 | 194, 201 | anbi12d 465 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑀 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀)))) |
203 | 202 | exbidv 1802 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀)))) |
204 | 203 | rspcev 2813 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧
∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑀))) → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
205 | 11, 191, 204 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
206 | 205 | olcd 724 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
207 | 206 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
208 | | breq2 3965 |
. . . . . . . . . . . 12
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀))) |
209 | 208 | 3anbi3d 1297 |
. . . . . . . . . . 11
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)))) |
210 | 209 | rexbidv 2455 |
. . . . . . . . . 10
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)))) |
211 | | eqeq1 2161 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) ↔ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
212 | 211 | anbi2d 460 |
. . . . . . . . . . . 12
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
213 | 212 | exbidv 1802 |
. . . . . . . . . . 11
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
214 | 213 | rexbidv 2455 |
. . . . . . . . . 10
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
215 | 210, 214 | orbi12d 783 |
. . . . . . . . 9
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))))) |
216 | 215 | moi2 2889 |
. . . . . . . 8
⊢ ((((seq1(
+ , (𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) ∈ ℂ ∧ ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))))) → 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) |
217 | 45, 92, 93, 207, 216 | syl22anc 1218 |
. . . . . . 7
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) → 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) |
218 | 217 | ex 114 |
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) → 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀))) |
219 | 206, 215 | syl5ibrcom 156 |
. . . . . 6
⊢ (𝜑 → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))))) |
220 | 218, 219 | impbid 128 |
. . . . 5
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀))) |
221 | 220 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) ∈ ℂ) → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀))) |
222 | 221 | iota5 5148 |
. . 3
⊢ ((𝜑 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀) ∈ ℂ) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) |
223 | 44, 222 | mpdan 418 |
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) |
224 | 1, 223 | syl5eq 2199 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) |