ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3 GIF version

Theorem fsum3 11552
Description: The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
fsum.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fsum.2 (𝜑𝑀 ∈ ℕ)
fsum.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsum.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fsum3 (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fsum3
Dummy variables 𝑓 𝑖 𝑗 𝑚 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11519 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
2 nnuz 9637 . . . . 5 ℕ = (ℤ‘1)
3 1zzd 9353 . . . . 5 (𝜑 → 1 ∈ ℤ)
4 elnnuz 9638 . . . . . 6 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
52eqimss2i 3240 . . . . . . . . . 10 (ℤ‘1) ⊆ ℕ
65sseli 3179 . . . . . . . . 9 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
76adantl 277 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
8 fveq2 5558 . . . . . . . . . . 11 (𝑛 = 𝑥 → (𝐺𝑛) = (𝐺𝑥))
98eleq1d 2265 . . . . . . . . . 10 (𝑛 = 𝑥 → ((𝐺𝑛) ∈ ℂ ↔ (𝐺𝑥) ∈ ℂ))
10 fsum.1 . . . . . . . . . . . 12 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
11 fsum.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
12 fsum.3 . . . . . . . . . . . 12 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
13 fsum.4 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
14 fsum.5 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
1510, 11, 12, 13, 14fsumgcl 11551 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
1615ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
17 1zzd 9353 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → 1 ∈ ℤ)
1811nnzd 9447 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
1918ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → 𝑀 ∈ ℤ)
20 eluzelz 9610 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℤ)
2120ad2antlr 489 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → 𝑥 ∈ ℤ)
2217, 19, 213jca 1179 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ))
23 eluzle 9613 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ‘1) → 1 ≤ 𝑥)
2423ad2antlr 489 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → 1 ≤ 𝑥)
25 simpr 110 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → 𝑥𝑀)
2624, 25jca 306 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → (1 ≤ 𝑥𝑥𝑀))
27 elfz2 10090 . . . . . . . . . . 11 (𝑥 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (1 ≤ 𝑥𝑥𝑀)))
2822, 26, 27sylanbrc 417 . . . . . . . . . 10 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → 𝑥 ∈ (1...𝑀))
299, 16, 28rspcdva 2873 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → (𝐺𝑥) ∈ ℂ)
30 0cnd 8019 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ ¬ 𝑥𝑀) → 0 ∈ ℂ)
317nnzd 9447 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℤ)
3218adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘1)) → 𝑀 ∈ ℤ)
33 zdcle 9402 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑥𝑀)
3431, 32, 33syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘1)) → DECID 𝑥𝑀)
3529, 30, 34ifcldadc 3590 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘1)) → if(𝑥𝑀, (𝐺𝑥), 0) ∈ ℂ)
36 breq1 4036 . . . . . . . . . 10 (𝑛 = 𝑥 → (𝑛𝑀𝑥𝑀))
3736, 8ifbieq1d 3583 . . . . . . . . 9 (𝑛 = 𝑥 → if(𝑛𝑀, (𝐺𝑛), 0) = if(𝑥𝑀, (𝐺𝑥), 0))
38 eqid 2196 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))
3937, 38fvmptg 5637 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ if(𝑥𝑀, (𝐺𝑥), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))‘𝑥) = if(𝑥𝑀, (𝐺𝑥), 0))
407, 35, 39syl2anc 411 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))‘𝑥) = if(𝑥𝑀, (𝐺𝑥), 0))
4140, 35eqeltrd 2273 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))‘𝑥) ∈ ℂ)
424, 41sylan2b 287 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))‘𝑥) ∈ ℂ)
432, 3, 42serf 10575 . . . 4 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))):ℕ⟶ℂ)
4443, 11ffvelcdmd 5698 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) ∈ ℂ)
4544adantr 276 . . . . . . . 8 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) ∈ ℂ)
46 eleq1w 2257 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝑛𝐴𝑗𝐴))
47 csbeq1 3087 . . . . . . . . . . . . 13 (𝑛 = 𝑗𝑛 / 𝑘𝐵 = 𝑗 / 𝑘𝐵)
4846, 47ifbieq1d 3583 . . . . . . . . . . . 12 (𝑛 = 𝑗 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
4948cbvmptv 4129 . . . . . . . . . . 11 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
5013ralrimiva 2570 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
51 nfcsb1v 3117 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐵
5251nfel1 2350 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
53 csbeq1a 3093 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
5453eleq1d 2265 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
5552, 54rspc 2862 . . . . . . . . . . . 12 (𝑗𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑗 / 𝑘𝐵 ∈ ℂ))
5650, 55mpan9 281 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
57 breq1 4036 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑖 ≤ (♯‘𝐴)))
58 fveq2 5558 . . . . . . . . . . . . . . 15 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
5958csbeq1d 3091 . . . . . . . . . . . . . 14 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵)
60 csbco 3094 . . . . . . . . . . . . . 14 (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵
6159, 60eqtr4di 2247 . . . . . . . . . . . . 13 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
6257, 61ifbieq1d 3583 . . . . . . . . . . . 12 (𝑛 = 𝑖 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑖 ≤ (♯‘𝐴), (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵, 0))
6362cbvmptv 4129 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑖 ∈ ℕ ↦ if(𝑖 ≤ (♯‘𝐴), (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵, 0))
6449, 56, 63, 63summodc 11548 . . . . . . . . . 10 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
65 eleq1w 2257 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑗 → (𝑢𝐴𝑗𝐴))
6665dcbid 839 . . . . . . . . . . . . . . 15 (𝑢 = 𝑗 → (DECID 𝑢𝐴DECID 𝑗𝐴))
6766cbvralv 2729 . . . . . . . . . . . . . 14 (∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ↔ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
68673anbi2i 1193 . . . . . . . . . . . . 13 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6968rexbii 2504 . . . . . . . . . . . 12 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
70 1zzd 9353 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ → 1 ∈ ℤ)
71 nnz 9345 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
7270, 71fzfigd 10523 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ → (1...𝑚) ∈ Fin)
73 fihasheqf1oi 10879 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑚) ∈ Fin ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (♯‘(1...𝑚)) = (♯‘𝐴))
7472, 73sylan 283 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (♯‘(1...𝑚)) = (♯‘𝐴))
75 nnnn0 9256 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
7675adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ ℕ0)
77 hashfz1 10875 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ0 → (♯‘(1...𝑚)) = 𝑚)
7876, 77syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (♯‘(1...𝑚)) = 𝑚)
7974, 78eqtr3d 2231 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (♯‘𝐴) = 𝑚)
8079breq2d 4045 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑛 ≤ (♯‘𝐴) ↔ 𝑛𝑚))
8180ifbid 3582 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
8281mpteq2dv 4124 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
8382seqeq3d 10547 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))))
8483fveq1d 5560 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
8584eqeq2d 2208 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
8685pm5.32da 452 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
8786exbidv 1839 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
8887rexbiia 2512 . . . . . . . . . . . 12 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
8969, 88orbi12i 765 . . . . . . . . . . 11 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
9089mobii 2082 . . . . . . . . . 10 (∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
9164, 90sylib 122 . . . . . . . . 9 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
9291adantr 276 . . . . . . . 8 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
93 simpr 110 . . . . . . . 8 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
94 f1of 5504 . . . . . . . . . . . . . 14 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
9512, 94syl 14 . . . . . . . . . . . . 13 (𝜑𝐹:(1...𝑀)⟶𝐴)
963, 18fzfigd 10523 . . . . . . . . . . . . 13 (𝜑 → (1...𝑀) ∈ Fin)
97 fex 5791 . . . . . . . . . . . . 13 ((𝐹:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin) → 𝐹 ∈ V)
9895, 96, 97syl2anc 411 . . . . . . . . . . . 12 (𝜑𝐹 ∈ V)
9911, 2eleqtrdi 2289 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘1))
10014ralrimiva 2570 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = 𝐶)
101 nfv 1542 . . . . . . . . . . . . . . . . . 18 𝑘(𝐺𝑛) = 𝐶
102 nfcsb1v 3117 . . . . . . . . . . . . . . . . . . 19 𝑛𝑘 / 𝑛𝐶
103102nfeq2 2351 . . . . . . . . . . . . . . . . . 18 𝑛(𝐺𝑘) = 𝑘 / 𝑛𝐶
104 fveq2 5558 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
105 csbeq1a 3093 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘𝐶 = 𝑘 / 𝑛𝐶)
106104, 105eqeq12d 2211 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝐺𝑛) = 𝐶 ↔ (𝐺𝑘) = 𝑘 / 𝑛𝐶))
107101, 103, 106cbvral 2725 . . . . . . . . . . . . . . . . 17 (∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = 𝐶 ↔ ∀𝑘 ∈ (1...𝑀)(𝐺𝑘) = 𝑘 / 𝑛𝐶)
108100, 107sylib 122 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝐺𝑘) = 𝑘 / 𝑛𝐶)
109108r19.21bi 2585 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) = 𝑘 / 𝑛𝐶)
110 elfznn 10129 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
111110adantl 277 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℕ)
112 elfzle2 10103 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑀) → 𝑘𝑀)
113112adantl 277 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘𝑀)
114113iftrued 3568 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝑀)) → if(𝑘𝑀, (𝐺𝑘), 0) = (𝐺𝑘))
115104eleq1d 2265 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → ((𝐺𝑛) ∈ ℂ ↔ (𝐺𝑘) ∈ ℂ))
11615adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
117 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (1...𝑀))
118115, 116, 117rspcdva 2873 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) ∈ ℂ)
119114, 118eqeltrd 2273 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝑀)) → if(𝑘𝑀, (𝐺𝑘), 0) ∈ ℂ)
120 breq1 4036 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑛𝑀𝑘𝑀))
121120, 104ifbieq1d 3583 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → if(𝑛𝑀, (𝐺𝑛), 0) = if(𝑘𝑀, (𝐺𝑘), 0))
122121, 38fvmptg 5637 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ if(𝑘𝑀, (𝐺𝑘), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))‘𝑘) = if(𝑘𝑀, (𝐺𝑘), 0))
123111, 119, 122syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))‘𝑘) = if(𝑘𝑀, (𝐺𝑘), 0))
124123, 114eqtrd 2229 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))‘𝑘) = (𝐺𝑘))
125113iftrued 3568 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝑀)) → if(𝑘𝑀, 𝑘 / 𝑛𝐶, 0) = 𝑘 / 𝑛𝐶)
12695ffvelcdmda 5697 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) ∈ 𝐴)
12710adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹𝑛)) → 𝐵 = 𝐶)
128126, 127csbied 3131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 = 𝐶)
12950adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
130 nfcsb1v 3117 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘(𝐹𝑛) / 𝑘𝐵
131130nfel1 2350 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘(𝐹𝑛) / 𝑘𝐵 ∈ ℂ
132 csbeq1a 3093 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = (𝐹𝑛) → 𝐵 = (𝐹𝑛) / 𝑘𝐵)
133132eleq1d 2265 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = (𝐹𝑛) → (𝐵 ∈ ℂ ↔ (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
134131, 133rspc 2862 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑛) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ))
135126, 129, 134sylc 62 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 ∈ ℂ)
136128, 135eqeltrrd 2274 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ (1...𝑀)) → 𝐶 ∈ ℂ)
137136ralrimiva 2570 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑛 ∈ (1...𝑀)𝐶 ∈ ℂ)
138 nfv 1542 . . . . . . . . . . . . . . . . . . . . 21 𝑘 𝐶 ∈ ℂ
139102nfel1 2350 . . . . . . . . . . . . . . . . . . . . 21 𝑛𝑘 / 𝑛𝐶 ∈ ℂ
140105eleq1d 2265 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐶 ∈ ℂ ↔ 𝑘 / 𝑛𝐶 ∈ ℂ))
141138, 139, 140cbvral 2725 . . . . . . . . . . . . . . . . . . . 20 (∀𝑛 ∈ (1...𝑀)𝐶 ∈ ℂ ↔ ∀𝑘 ∈ (1...𝑀)𝑘 / 𝑛𝐶 ∈ ℂ)
142137, 141sylib 122 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑘 ∈ (1...𝑀)𝑘 / 𝑛𝐶 ∈ ℂ)
143142r19.21bi 2585 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 / 𝑛𝐶 ∈ ℂ)
144125, 143eqeltrd 2273 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝑀)) → if(𝑘𝑀, 𝑘 / 𝑛𝐶, 0) ∈ ℂ)
145 nfcv 2339 . . . . . . . . . . . . . . . . . 18 𝑛𝑘
146 nfv 1542 . . . . . . . . . . . . . . . . . . 19 𝑛 𝑘𝑀
147 nfcv 2339 . . . . . . . . . . . . . . . . . . 19 𝑛0
148146, 102, 147nfif 3589 . . . . . . . . . . . . . . . . . 18 𝑛if(𝑘𝑀, 𝑘 / 𝑛𝐶, 0)
149120, 105ifbieq1d 3583 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → if(𝑛𝑀, 𝐶, 0) = if(𝑘𝑀, 𝑘 / 𝑛𝐶, 0))
150 eqid 2196 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0))
151145, 148, 149, 150fvmptf 5654 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ if(𝑘𝑀, 𝑘 / 𝑛𝐶, 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0))‘𝑘) = if(𝑘𝑀, 𝑘 / 𝑛𝐶, 0))
152111, 144, 151syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0))‘𝑘) = if(𝑘𝑀, 𝑘 / 𝑛𝐶, 0))
153152, 125eqtrd 2229 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0))‘𝑘) = 𝑘 / 𝑛𝐶)
154109, 124, 1533eqtr4d 2239 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0))‘𝑘) = ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0))‘𝑘))
155137ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → ∀𝑛 ∈ (1...𝑀)𝐶 ∈ ℂ)
156 nfcsb1v 3117 . . . . . . . . . . . . . . . . . . . 20 𝑛𝑥 / 𝑛𝐶
157156nfel1 2350 . . . . . . . . . . . . . . . . . . 19 𝑛𝑥 / 𝑛𝐶 ∈ ℂ
158 csbeq1a 3093 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑥𝐶 = 𝑥 / 𝑛𝐶)
159158eleq1d 2265 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑥 → (𝐶 ∈ ℂ ↔ 𝑥 / 𝑛𝐶 ∈ ℂ))
160157, 159rspc 2862 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (1...𝑀) → (∀𝑛 ∈ (1...𝑀)𝐶 ∈ ℂ → 𝑥 / 𝑛𝐶 ∈ ℂ))
16128, 155, 160sylc 62 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (ℤ‘1)) ∧ 𝑥𝑀) → 𝑥 / 𝑛𝐶 ∈ ℂ)
162161, 30, 34ifcldadc 3590 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (ℤ‘1)) → if(𝑥𝑀, 𝑥 / 𝑛𝐶, 0) ∈ ℂ)
163 nfcv 2339 . . . . . . . . . . . . . . . . 17 𝑛𝑥
164 nfv 1542 . . . . . . . . . . . . . . . . . 18 𝑛 𝑥𝑀
165164, 156, 147nfif 3589 . . . . . . . . . . . . . . . . 17 𝑛if(𝑥𝑀, 𝑥 / 𝑛𝐶, 0)
16636, 158ifbieq1d 3583 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → if(𝑛𝑀, 𝐶, 0) = if(𝑥𝑀, 𝑥 / 𝑛𝐶, 0))
167163, 165, 166, 150fvmptf 5654 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ if(𝑥𝑀, 𝑥 / 𝑛𝐶, 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0))‘𝑥) = if(𝑥𝑀, 𝑥 / 𝑛𝐶, 0))
1687, 162, 167syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0))‘𝑥) = if(𝑥𝑀, 𝑥 / 𝑛𝐶, 0))
169168, 162eqeltrd 2273 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0))‘𝑥) ∈ ℂ)
170 addcl 8004 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
171170adantl 277 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
17299, 154, 41, 169, 171seq3fveq 10571 . . . . . . . . . . . . 13 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0)))‘𝑀))
17312, 172jca 306 . . . . . . . . . . . 12 (𝜑 → (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0)))‘𝑀)))
174 f1oeq1 5492 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → (𝑓:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)–1-1-onto𝐴))
175 fveq1 5557 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
176175csbeq1d 3091 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
177 vex 2766 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓 ∈ V
178 vex 2766 . . . . . . . . . . . . . . . . . . . . . . 23 𝑛 ∈ V
179177, 178fvex 5578 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑛) ∈ V
180175, 179eqeltrrdi 2288 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝐹 → (𝐹𝑛) ∈ V)
18110adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 = 𝐹𝑘 = (𝐹𝑛)) → 𝐵 = 𝐶)
182180, 181csbied 3131 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝐹(𝐹𝑛) / 𝑘𝐵 = 𝐶)
183176, 182eqtrd 2229 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = 𝐶)
184183ifeq1d 3578 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝐹 → if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑛𝑀, 𝐶, 0))
185184mpteq2dv 4124 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐹 → (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0)))
186185seqeq3d 10547 . . . . . . . . . . . . . . . 16 (𝑓 = 𝐹 → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0))))
187186fveq1d 5560 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0)))‘𝑀))
188187eqeq2d 2208 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → ((seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀) ↔ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0)))‘𝑀)))
189174, 188anbi12d 473 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀)) ↔ (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0)))‘𝑀))))
190189spcegv 2852 . . . . . . . . . . . 12 (𝐹 ∈ V → ((𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, 𝐶, 0)))‘𝑀)) → ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀))))
19198, 173, 190sylc 62 . . . . . . . . . . 11 (𝜑 → ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀)))
192 oveq2 5930 . . . . . . . . . . . . . . 15 (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀))
193 f1oeq2 5493 . . . . . . . . . . . . . . 15 ((1...𝑚) = (1...𝑀) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑀)–1-1-onto𝐴))
194192, 193syl 14 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑀)–1-1-onto𝐴))
195 breq2 4037 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑀 → (𝑛𝑚𝑛𝑀))
196195ifbid 3582 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑀 → if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0))
197196mpteq2dv 4124 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑀 → (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))
198197seqeq3d 10547 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑀 → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0))))
199 id 19 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑀𝑚 = 𝑀)
200198, 199fveq12d 5565 . . . . . . . . . . . . . . 15 (𝑚 = 𝑀 → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀))
201200eqeq2d 2208 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → ((seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) ↔ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀)))
202194, 201anbi12d 473 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ((𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀))))
203202exbidv 1839 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀))))
204203rspcev 2868 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑀))) → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
20511, 191, 204syl2anc 411 . . . . . . . . . 10 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
206205olcd 735 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
207206adantr 276 . . . . . . . 8 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
208 breq2 4037 . . . . . . . . . . . 12 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀)))
2092083anbi3d 1329 . . . . . . . . . . 11 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))))
210209rexbidv 2498 . . . . . . . . . 10 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))))
211 eqeq1 2203 . . . . . . . . . . . . 13 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) ↔ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
212211anbi2d 464 . . . . . . . . . . . 12 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
213212exbidv 1839 . . . . . . . . . . 11 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
214213rexbidv 2498 . . . . . . . . . 10 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
215210, 214orbi12d 794 . . . . . . . . 9 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))))
216215moi2 2945 . . . . . . . 8 ((((seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) ∈ ℂ ∧ ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))) → 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))
21745, 92, 93, 207, 216syl22anc 1250 . . . . . . 7 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) → 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))
218217ex 115 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) → 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀)))
219206, 215syl5ibrcom 157 . . . . . 6 (𝜑 → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))))
220218, 219impbid 129 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀)))
221220adantr 276 . . . 4 ((𝜑 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) ∈ ℂ) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀)))
222221iota5 5240 . . 3 ((𝜑 ∧ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀) ∈ ℂ) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))
22344, 222mpdan 421 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))
2241, 223eqtrid 2241 1 (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  ∃*wmo 2046  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  csb 3084  wss 3157  ifcif 3561   class class class wbr 4033  cmpt 4094  cio 5217  wf 5254  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  Fincfn 6799  cc 7877  0cc0 7879  1c1 7880   + caddc 7882  cle 8062  cn 8990  0cn0 9249  cz 9326  cuz 9601  ...cfz 10083  seqcseq 10539  chash 10867  cli 11443  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  isumz  11554  fsumf1o  11555  fsumcl2lem  11563  fsumadd  11571  sumsnf  11574  fsummulc2  11613
  Copyright terms: Public domain W3C validator