ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1oleml GIF version

Theorem seq3f1oleml 10608
Description: Lemma for seq3f1o 10609. This is more or less the result, but stated in terms of 𝐹 and 𝐺 without 𝐻. 𝐿 and 𝐻 may differ in terms of what happens to terms after 𝑁. The terms after 𝑁 don't matter for the value at 𝑁 but we need some definition given the way our theorems concerning seq work. (Contributed by Jim Kingdon, 17-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1o.l 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1oleml (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥, + ,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem seq3f1oleml
Dummy variables 𝑓 𝑘 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 iseqf1o.2 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3 iseqf1o.3 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4 iseqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 iseqf1o.6 . . 3 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
6 iseqf1o.7 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
7 iseqf1o.l . . 3 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
8 breq1 4036 . . . . 5 (𝑎 = 𝑥 → (𝑎𝑁𝑥𝑁))
9 2fveq3 5563 . . . . 5 (𝑎 = 𝑥 → (𝐺‘(𝑓𝑎)) = (𝐺‘(𝑓𝑥)))
108, 9ifbieq1d 3583 . . . 4 (𝑎 = 𝑥 → if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
1110cbvmptv 4129 . . 3 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
121, 2, 3, 4, 5, 6, 7, 11seq3f1olemp 10607 . 2 (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
13 fveq2 5558 . . . . . 6 (𝑏 = 𝑥 → (𝑓𝑏) = (𝑓𝑥))
14 id 19 . . . . . 6 (𝑏 = 𝑥𝑏 = 𝑥)
1513, 14eqeq12d 2211 . . . . 5 (𝑏 = 𝑥 → ((𝑓𝑏) = 𝑏 ↔ (𝑓𝑥) = 𝑥))
1615cbvralv 2729 . . . 4 (∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ↔ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥)
17163anbi2i 1193 . . 3 ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
18 simpr3 1007 . . . 4 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
194adantr 276 . . . . 5 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
20 elfzuz 10096 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
2120adantl 277 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (ℤ𝑀))
22 elfzle2 10103 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
2322adantl 277 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘𝑁)
2423iftrued 3568 . . . . . . . 8 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)) = (𝐺‘(𝑓𝑘)))
25 fveq2 5558 . . . . . . . . . . . 12 (𝑏 = 𝑘 → (𝑓𝑏) = (𝑓𝑘))
26 id 19 . . . . . . . . . . . 12 (𝑏 = 𝑘𝑏 = 𝑘)
2725, 26eqeq12d 2211 . . . . . . . . . . 11 (𝑏 = 𝑘 → ((𝑓𝑏) = 𝑏 ↔ (𝑓𝑘) = 𝑘))
28 simplr2 1042 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏)
29 simpr 110 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
3027, 28, 29rspcdva 2873 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑓𝑘) = 𝑘)
3130fveq2d 5562 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓𝑘)) = (𝐺𝑘))
32 fveq2 5558 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
3332eleq1d 2265 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑘) ∈ 𝑆))
346ralrimiva 2570 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
3534ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
3633, 35, 21rspcdva 2873 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
3731, 36eqeltrd 2273 . . . . . . . 8 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓𝑘)) ∈ 𝑆)
3824, 37eqeltrd 2273 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)) ∈ 𝑆)
39 breq1 4036 . . . . . . . . 9 (𝑎 = 𝑘 → (𝑎𝑁𝑘𝑁))
40 2fveq3 5563 . . . . . . . . 9 (𝑎 = 𝑘 → (𝐺‘(𝑓𝑎)) = (𝐺‘(𝑓𝑘)))
4139, 40ifbieq1d 3583 . . . . . . . 8 (𝑎 = 𝑘 → if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)) = if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)))
42 eqid 2196 . . . . . . . 8 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))) = (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))
4341, 42fvmptg 5637 . . . . . . 7 ((𝑘 ∈ (ℤ𝑀) ∧ if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)))
4421, 38, 43syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)))
4544, 24, 313eqtrd 2233 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑘) = (𝐺𝑘))
46 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
47 fveq2 5558 . . . . . . . . . 10 (𝑎 = (𝑓𝑥) → (𝐺𝑎) = (𝐺‘(𝑓𝑥)))
4847eleq1d 2265 . . . . . . . . 9 (𝑎 = (𝑓𝑥) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑓𝑥)) ∈ 𝑆))
4934ad3antrrr 492 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
50 fveq2 5558 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐺𝑎) = (𝐺𝑥))
5150eleq1d 2265 . . . . . . . . . . 11 (𝑎 = 𝑥 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑥) ∈ 𝑆))
5251cbvralv 2729 . . . . . . . . . 10 (∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆 ↔ ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
5349, 52sylibr 134 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
54 simpr1 1005 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5554ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
56 f1of 5504 . . . . . . . . . . . 12 (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁))
5755, 56syl 14 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁))
58 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
5946adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (ℤ𝑀))
60 eluzelz 9610 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
614, 60syl 14 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
6261ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
63 elfz5 10092 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
6459, 62, 63syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
6558, 64mpbird 167 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
6657, 65ffvelcdmd 5698 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑓𝑥) ∈ (𝑀...𝑁))
67 elfzuz 10096 . . . . . . . . . 10 ((𝑓𝑥) ∈ (𝑀...𝑁) → (𝑓𝑥) ∈ (ℤ𝑀))
6866, 67syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑓𝑥) ∈ (ℤ𝑀))
6948, 53, 68rspcdva 2873 . . . . . . . 8 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝑓𝑥)) ∈ 𝑆)
70 fveq2 5558 . . . . . . . . . 10 (𝑎 = 𝑀 → (𝐺𝑎) = (𝐺𝑀))
7170eleq1d 2265 . . . . . . . . 9 (𝑎 = 𝑀 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
7234, 52sylibr 134 . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
7372ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
74 eluzel2 9606 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
754, 74syl 14 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7675ad3antrrr 492 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ ℤ)
77 uzid 9615 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
7876, 77syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ (ℤ𝑀))
7971, 73, 78rspcdva 2873 . . . . . . . 8 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
80 eluzelz 9610 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
8180adantl 277 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
8261ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
83 zdcle 9402 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
8481, 82, 83syl2anc 411 . . . . . . . 8 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
8569, 79, 84ifcldadc 3590 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) ∈ 𝑆)
8610, 42fvmptg 5637 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
8746, 85, 86syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
8887, 85eqeltrd 2273 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑥) ∈ 𝑆)
896adantlr 477 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
901adantlr 477 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9119, 45, 88, 89, 90seq3fveq 10571 . . . 4 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
9218, 91eqtr3d 2231 . . 3 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
9317, 92sylan2br 288 . 2 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
9412, 93exlimddv 1913 1 (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wral 2475  ifcif 3561   class class class wbr 4033  cmpt 4094  wf 5254  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  cle 8062  cz 9326  cuz 9601  ...cfz 10083  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by:  seq3f1o  10609
  Copyright terms: Public domain W3C validator