ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1oleml GIF version

Theorem seq3f1oleml 10269
Description: Lemma for seq3f1o 10270. This is more or less the result, but stated in terms of 𝐹 and 𝐺 without 𝐻. 𝐿 and 𝐻 may differ in terms of what happens to terms after 𝑁. The terms after 𝑁 don't matter for the value at 𝑁 but we need some definition given the way our theorems concerning seq work. (Contributed by Jim Kingdon, 17-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1o.l 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1oleml (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥, + ,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem seq3f1oleml
Dummy variables 𝑓 𝑘 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 iseqf1o.2 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3 iseqf1o.3 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4 iseqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 iseqf1o.6 . . 3 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
6 iseqf1o.7 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
7 iseqf1o.l . . 3 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
8 breq1 3927 . . . . 5 (𝑎 = 𝑥 → (𝑎𝑁𝑥𝑁))
9 2fveq3 5419 . . . . 5 (𝑎 = 𝑥 → (𝐺‘(𝑓𝑎)) = (𝐺‘(𝑓𝑥)))
108, 9ifbieq1d 3489 . . . 4 (𝑎 = 𝑥 → if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
1110cbvmptv 4019 . . 3 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
121, 2, 3, 4, 5, 6, 7, 11seq3f1olemp 10268 . 2 (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
13 fveq2 5414 . . . . . 6 (𝑏 = 𝑥 → (𝑓𝑏) = (𝑓𝑥))
14 id 19 . . . . . 6 (𝑏 = 𝑥𝑏 = 𝑥)
1513, 14eqeq12d 2152 . . . . 5 (𝑏 = 𝑥 → ((𝑓𝑏) = 𝑏 ↔ (𝑓𝑥) = 𝑥))
1615cbvralv 2652 . . . 4 (∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ↔ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥)
17163anbi2i 1173 . . 3 ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
18 simpr3 989 . . . 4 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
194adantr 274 . . . . 5 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
20 elfzuz 9795 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
2120adantl 275 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (ℤ𝑀))
22 elfzle2 9801 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
2322adantl 275 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘𝑁)
2423iftrued 3476 . . . . . . . 8 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)) = (𝐺‘(𝑓𝑘)))
25 fveq2 5414 . . . . . . . . . . . 12 (𝑏 = 𝑘 → (𝑓𝑏) = (𝑓𝑘))
26 id 19 . . . . . . . . . . . 12 (𝑏 = 𝑘𝑏 = 𝑘)
2725, 26eqeq12d 2152 . . . . . . . . . . 11 (𝑏 = 𝑘 → ((𝑓𝑏) = 𝑏 ↔ (𝑓𝑘) = 𝑘))
28 simplr2 1024 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏)
29 simpr 109 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
3027, 28, 29rspcdva 2789 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑓𝑘) = 𝑘)
3130fveq2d 5418 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓𝑘)) = (𝐺𝑘))
32 fveq2 5414 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
3332eleq1d 2206 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑘) ∈ 𝑆))
346ralrimiva 2503 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
3534ad2antrr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
3633, 35, 21rspcdva 2789 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
3731, 36eqeltrd 2214 . . . . . . . 8 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓𝑘)) ∈ 𝑆)
3824, 37eqeltrd 2214 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)) ∈ 𝑆)
39 breq1 3927 . . . . . . . . 9 (𝑎 = 𝑘 → (𝑎𝑁𝑘𝑁))
40 2fveq3 5419 . . . . . . . . 9 (𝑎 = 𝑘 → (𝐺‘(𝑓𝑎)) = (𝐺‘(𝑓𝑘)))
4139, 40ifbieq1d 3489 . . . . . . . 8 (𝑎 = 𝑘 → if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)) = if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)))
42 eqid 2137 . . . . . . . 8 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))) = (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))
4341, 42fvmptg 5490 . . . . . . 7 ((𝑘 ∈ (ℤ𝑀) ∧ if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)))
4421, 38, 43syl2anc 408 . . . . . 6 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)))
4544, 24, 313eqtrd 2174 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑘) = (𝐺𝑘))
46 simpr 109 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
47 fveq2 5414 . . . . . . . . . 10 (𝑎 = (𝑓𝑥) → (𝐺𝑎) = (𝐺‘(𝑓𝑥)))
4847eleq1d 2206 . . . . . . . . 9 (𝑎 = (𝑓𝑥) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑓𝑥)) ∈ 𝑆))
4934ad3antrrr 483 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
50 fveq2 5414 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐺𝑎) = (𝐺𝑥))
5150eleq1d 2206 . . . . . . . . . . 11 (𝑎 = 𝑥 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑥) ∈ 𝑆))
5251cbvralv 2652 . . . . . . . . . 10 (∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆 ↔ ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
5349, 52sylibr 133 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
54 simpr1 987 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5554ad2antrr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
56 f1of 5360 . . . . . . . . . . . 12 (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁))
5755, 56syl 14 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁))
58 simpr 109 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
5946adantr 274 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (ℤ𝑀))
60 eluzelz 9328 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
614, 60syl 14 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
6261ad3antrrr 483 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
63 elfz5 9791 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
6459, 62, 63syl2anc 408 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
6558, 64mpbird 166 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
6657, 65ffvelrnd 5549 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑓𝑥) ∈ (𝑀...𝑁))
67 elfzuz 9795 . . . . . . . . . 10 ((𝑓𝑥) ∈ (𝑀...𝑁) → (𝑓𝑥) ∈ (ℤ𝑀))
6866, 67syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑓𝑥) ∈ (ℤ𝑀))
6948, 53, 68rspcdva 2789 . . . . . . . 8 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝑓𝑥)) ∈ 𝑆)
70 fveq2 5414 . . . . . . . . . 10 (𝑎 = 𝑀 → (𝐺𝑎) = (𝐺𝑀))
7170eleq1d 2206 . . . . . . . . 9 (𝑎 = 𝑀 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
7234, 52sylibr 133 . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
7372ad3antrrr 483 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
74 eluzel2 9324 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
754, 74syl 14 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7675ad3antrrr 483 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ ℤ)
77 uzid 9333 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
7876, 77syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ (ℤ𝑀))
7971, 73, 78rspcdva 2789 . . . . . . . 8 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
80 eluzelz 9328 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
8180adantl 275 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
8261ad2antrr 479 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
83 zdcle 9120 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
8481, 82, 83syl2anc 408 . . . . . . . 8 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
8569, 79, 84ifcldadc 3496 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) ∈ 𝑆)
8610, 42fvmptg 5490 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
8746, 85, 86syl2anc 408 . . . . . 6 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
8887, 85eqeltrd 2214 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑥) ∈ 𝑆)
896adantlr 468 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
901adantlr 468 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9119, 45, 88, 89, 90seq3fveq 10237 . . . 4 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
9218, 91eqtr3d 2172 . . 3 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
9317, 92sylan2br 286 . 2 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
9412, 93exlimddv 1870 1 (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wral 2414  ifcif 3469   class class class wbr 3924  cmpt 3984  wf 5114  1-1-ontowf1o 5117  cfv 5118  (class class class)co 5767  cle 7794  cz 9047  cuz 9319  ...cfz 9783  seqcseq 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-1o 6306  df-er 6422  df-en 6628  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-fzo 9913  df-seqfrec 10212
This theorem is referenced by:  seq3f1o  10270
  Copyright terms: Public domain W3C validator