ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1oleml GIF version

Theorem seq3f1oleml 10725
Description: Lemma for seq3f1o 10726. This is more or less the result, but stated in terms of 𝐹 and 𝐺 without 𝐻. 𝐿 and 𝐻 may differ in terms of what happens to terms after 𝑁. The terms after 𝑁 don't matter for the value at 𝑁 but we need some definition given the way our theorems concerning seq work. (Contributed by Jim Kingdon, 17-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1o.l 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1oleml (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥, + ,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem seq3f1oleml
Dummy variables 𝑓 𝑘 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 iseqf1o.2 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3 iseqf1o.3 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4 iseqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 iseqf1o.6 . . 3 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
6 iseqf1o.7 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
7 iseqf1o.l . . 3 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
8 breq1 4085 . . . . 5 (𝑎 = 𝑥 → (𝑎𝑁𝑥𝑁))
9 2fveq3 5628 . . . . 5 (𝑎 = 𝑥 → (𝐺‘(𝑓𝑎)) = (𝐺‘(𝑓𝑥)))
108, 9ifbieq1d 3625 . . . 4 (𝑎 = 𝑥 → if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
1110cbvmptv 4179 . . 3 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
121, 2, 3, 4, 5, 6, 7, 11seq3f1olemp 10724 . 2 (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
13 fveq2 5623 . . . . . 6 (𝑏 = 𝑥 → (𝑓𝑏) = (𝑓𝑥))
14 id 19 . . . . . 6 (𝑏 = 𝑥𝑏 = 𝑥)
1513, 14eqeq12d 2244 . . . . 5 (𝑏 = 𝑥 → ((𝑓𝑏) = 𝑏 ↔ (𝑓𝑥) = 𝑥))
1615cbvralv 2765 . . . 4 (∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ↔ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥)
17163anbi2i 1215 . . 3 ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
18 simpr3 1029 . . . 4 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
194adantr 276 . . . . 5 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
20 elfzuz 10205 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
2120adantl 277 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (ℤ𝑀))
22 elfzle2 10212 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
2322adantl 277 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘𝑁)
2423iftrued 3609 . . . . . . . 8 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)) = (𝐺‘(𝑓𝑘)))
25 fveq2 5623 . . . . . . . . . . . 12 (𝑏 = 𝑘 → (𝑓𝑏) = (𝑓𝑘))
26 id 19 . . . . . . . . . . . 12 (𝑏 = 𝑘𝑏 = 𝑘)
2725, 26eqeq12d 2244 . . . . . . . . . . 11 (𝑏 = 𝑘 → ((𝑓𝑏) = 𝑏 ↔ (𝑓𝑘) = 𝑘))
28 simplr2 1064 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏)
29 simpr 110 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
3027, 28, 29rspcdva 2912 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑓𝑘) = 𝑘)
3130fveq2d 5627 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓𝑘)) = (𝐺𝑘))
32 fveq2 5623 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
3332eleq1d 2298 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑘) ∈ 𝑆))
346ralrimiva 2603 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
3534ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
3633, 35, 21rspcdva 2912 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
3731, 36eqeltrd 2306 . . . . . . . 8 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓𝑘)) ∈ 𝑆)
3824, 37eqeltrd 2306 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)) ∈ 𝑆)
39 breq1 4085 . . . . . . . . 9 (𝑎 = 𝑘 → (𝑎𝑁𝑘𝑁))
40 2fveq3 5628 . . . . . . . . 9 (𝑎 = 𝑘 → (𝐺‘(𝑓𝑎)) = (𝐺‘(𝑓𝑘)))
4139, 40ifbieq1d 3625 . . . . . . . 8 (𝑎 = 𝑘 → if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)) = if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)))
42 eqid 2229 . . . . . . . 8 (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))) = (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))
4341, 42fvmptg 5703 . . . . . . 7 ((𝑘 ∈ (ℤ𝑀) ∧ if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)))
4421, 38, 43syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑘) = if(𝑘𝑁, (𝐺‘(𝑓𝑘)), (𝐺𝑀)))
4544, 24, 313eqtrd 2266 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑘) = (𝐺𝑘))
46 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
47 fveq2 5623 . . . . . . . . . 10 (𝑎 = (𝑓𝑥) → (𝐺𝑎) = (𝐺‘(𝑓𝑥)))
4847eleq1d 2298 . . . . . . . . 9 (𝑎 = (𝑓𝑥) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑓𝑥)) ∈ 𝑆))
4934ad3antrrr 492 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
50 fveq2 5623 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐺𝑎) = (𝐺𝑥))
5150eleq1d 2298 . . . . . . . . . . 11 (𝑎 = 𝑥 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑥) ∈ 𝑆))
5251cbvralv 2765 . . . . . . . . . 10 (∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆 ↔ ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
5349, 52sylibr 134 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
54 simpr1 1027 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5554ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
56 f1of 5568 . . . . . . . . . . . 12 (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁))
5755, 56syl 14 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁))
58 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
5946adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (ℤ𝑀))
60 eluzelz 9719 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
614, 60syl 14 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
6261ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
63 elfz5 10201 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
6459, 62, 63syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
6558, 64mpbird 167 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
6657, 65ffvelcdmd 5764 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑓𝑥) ∈ (𝑀...𝑁))
67 elfzuz 10205 . . . . . . . . . 10 ((𝑓𝑥) ∈ (𝑀...𝑁) → (𝑓𝑥) ∈ (ℤ𝑀))
6866, 67syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑓𝑥) ∈ (ℤ𝑀))
6948, 53, 68rspcdva 2912 . . . . . . . 8 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝑓𝑥)) ∈ 𝑆)
70 fveq2 5623 . . . . . . . . . 10 (𝑎 = 𝑀 → (𝐺𝑎) = (𝐺𝑀))
7170eleq1d 2298 . . . . . . . . 9 (𝑎 = 𝑀 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
7234, 52sylibr 134 . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
7372ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
74 eluzel2 9715 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
754, 74syl 14 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7675ad3antrrr 492 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ ℤ)
77 uzid 9724 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
7876, 77syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ (ℤ𝑀))
7971, 73, 78rspcdva 2912 . . . . . . . 8 ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
80 eluzelz 9719 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
8180adantl 277 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
8261ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
83 zdcle 9511 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
8481, 82, 83syl2anc 411 . . . . . . . 8 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
8569, 79, 84ifcldadc 3632 . . . . . . 7 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) ∈ 𝑆)
8610, 42fvmptg 5703 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
8746, 85, 86syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑥) = if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
8887, 85eqeltrd 2306 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀)))‘𝑥) ∈ 𝑆)
896adantlr 477 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
901adantlr 477 . . . . 5 (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9119, 45, 88, 89, 90seq3fveq 10688 . . . 4 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
9218, 91eqtr3d 2264 . . 3 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
9317, 92sylan2br 288 . 2 ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ𝑀) ↦ if(𝑎𝑁, (𝐺‘(𝑓𝑎)), (𝐺𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
9412, 93exlimddv 1945 1 (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wral 2508  ifcif 3602   class class class wbr 4082  cmpt 4144  wf 5310  1-1-ontowf1o 5313  cfv 5314  (class class class)co 5994  cle 8170  cz 9434  cuz 9710  ...cfz 10192  seqcseq 10656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657
This theorem is referenced by:  seq3f1o  10726
  Copyright terms: Public domain W3C validator