Step | Hyp | Ref
| Expression |
1 | | iseqf1o.1 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
2 | | iseqf1o.2 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
3 | | iseqf1o.3 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
4 | | iseqf1o.4 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | | iseqf1o.6 |
. . 3
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
6 | | iseqf1o.7 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
7 | | iseqf1o.l |
. . 3
⊢ 𝐿 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐹‘𝑥)), (𝐺‘𝑀))) |
8 | | breq1 3992 |
. . . . 5
⊢ (𝑎 = 𝑥 → (𝑎 ≤ 𝑁 ↔ 𝑥 ≤ 𝑁)) |
9 | | 2fveq3 5501 |
. . . . 5
⊢ (𝑎 = 𝑥 → (𝐺‘(𝑓‘𝑎)) = (𝐺‘(𝑓‘𝑥))) |
10 | 8, 9 | ifbieq1d 3548 |
. . . 4
⊢ (𝑎 = 𝑥 → if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
11 | 10 | cbvmptv 4085 |
. . 3
⊢ (𝑎 ∈
(ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
12 | 1, 2, 3, 4, 5, 6, 7, 11 | seq3f1olemp 10458 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
13 | | fveq2 5496 |
. . . . . 6
⊢ (𝑏 = 𝑥 → (𝑓‘𝑏) = (𝑓‘𝑥)) |
14 | | id 19 |
. . . . . 6
⊢ (𝑏 = 𝑥 → 𝑏 = 𝑥) |
15 | 13, 14 | eqeq12d 2185 |
. . . . 5
⊢ (𝑏 = 𝑥 → ((𝑓‘𝑏) = 𝑏 ↔ (𝑓‘𝑥) = 𝑥)) |
16 | 15 | cbvralv 2696 |
. . . 4
⊢
(∀𝑏 ∈
(𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ↔ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥) |
17 | 16 | 3anbi2i 1186 |
. . 3
⊢ ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
18 | | simpr3 1000 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
19 | 4 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
20 | | elfzuz 9977 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
21 | 20 | adantl 275 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
22 | | elfzle2 9984 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ≤ 𝑁) |
23 | 22 | adantl 275 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ≤ 𝑁) |
24 | 23 | iftrued 3533 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀)) = (𝐺‘(𝑓‘𝑘))) |
25 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑘 → (𝑓‘𝑏) = (𝑓‘𝑘)) |
26 | | id 19 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑘 → 𝑏 = 𝑘) |
27 | 25, 26 | eqeq12d 2185 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑘 → ((𝑓‘𝑏) = 𝑏 ↔ (𝑓‘𝑘) = 𝑘)) |
28 | | simplr2 1035 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏) |
29 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
30 | 27, 28, 29 | rspcdva 2839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑓‘𝑘) = 𝑘) |
31 | 30 | fveq2d 5500 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓‘𝑘)) = (𝐺‘𝑘)) |
32 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) |
33 | 32 | eleq1d 2239 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) ∈ 𝑆 ↔ (𝐺‘𝑘) ∈ 𝑆)) |
34 | 6 | ralrimiva 2543 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
35 | 34 | ad2antrr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
36 | 33, 35, 21 | rspcdva 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) |
37 | 31, 36 | eqeltrd 2247 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓‘𝑘)) ∈ 𝑆) |
38 | 24, 37 | eqeltrd 2247 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀)) ∈ 𝑆) |
39 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → (𝑎 ≤ 𝑁 ↔ 𝑘 ≤ 𝑁)) |
40 | | 2fveq3 5501 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → (𝐺‘(𝑓‘𝑎)) = (𝐺‘(𝑓‘𝑘))) |
41 | 39, 40 | ifbieq1d 3548 |
. . . . . . . 8
⊢ (𝑎 = 𝑘 → if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)) = if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀))) |
42 | | eqid 2170 |
. . . . . . . 8
⊢ (𝑎 ∈
(ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))) = (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))) |
43 | 41, 42 | fvmptg 5572 |
. . . . . . 7
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑘) = if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀))) |
44 | 21, 38, 43 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑘) = if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀))) |
45 | 44, 24, 31 | 3eqtrd 2207 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑘) = (𝐺‘𝑘)) |
46 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
47 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑓‘𝑥) → (𝐺‘𝑎) = (𝐺‘(𝑓‘𝑥))) |
48 | 47 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑎 = (𝑓‘𝑥) → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑓‘𝑥)) ∈ 𝑆)) |
49 | 34 | ad3antrrr 489 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
50 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (𝐺‘𝑎) = (𝐺‘𝑥)) |
51 | 50 | eleq1d 2239 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘𝑥) ∈ 𝑆)) |
52 | 51 | cbvralv 2696 |
. . . . . . . . . 10
⊢
(∀𝑎 ∈
(ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆 ↔ ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
53 | 49, 52 | sylibr 133 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
54 | | simpr1 998 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
55 | 54 | ad2antrr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
56 | | f1of 5442 |
. . . . . . . . . . . 12
⊢ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁)) |
57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁)) |
58 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ≤ 𝑁) |
59 | 46 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) |
60 | | eluzelz 9496 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
61 | 4, 60 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℤ) |
62 | 61 | ad3antrrr 489 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑁 ∈ ℤ) |
63 | | elfz5 9973 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ≤ 𝑁)) |
64 | 59, 62, 63 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ≤ 𝑁)) |
65 | 58, 64 | mpbird 166 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ∈ (𝑀...𝑁)) |
66 | 57, 65 | ffvelrnd 5632 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑓‘𝑥) ∈ (𝑀...𝑁)) |
67 | | elfzuz 9977 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ (𝑀...𝑁) → (𝑓‘𝑥) ∈ (ℤ≥‘𝑀)) |
68 | 66, 67 | syl 14 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑓‘𝑥) ∈ (ℤ≥‘𝑀)) |
69 | 48, 53, 68 | rspcdva 2839 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝐺‘(𝑓‘𝑥)) ∈ 𝑆) |
70 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑀 → (𝐺‘𝑎) = (𝐺‘𝑀)) |
71 | 70 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑎 = 𝑀 → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘𝑀) ∈ 𝑆)) |
72 | 34, 52 | sylibr 133 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
73 | 72 | ad3antrrr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
74 | | eluzel2 9492 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
75 | 4, 74 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
76 | 75 | ad3antrrr 489 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → 𝑀 ∈ ℤ) |
77 | | uzid 9501 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
78 | 76, 77 | syl 14 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → 𝑀 ∈ (ℤ≥‘𝑀)) |
79 | 71, 73, 78 | rspcdva 2839 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → (𝐺‘𝑀) ∈ 𝑆) |
80 | | eluzelz 9496 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ ℤ) |
81 | 80 | adantl 275 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ ℤ) |
82 | 61 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
83 | | zdcle 9288 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑥 ≤
𝑁) |
84 | 81, 82, 83 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → DECID
𝑥 ≤ 𝑁) |
85 | 69, 79, 84 | ifcldadc 3555 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) ∈ 𝑆) |
86 | 10, 42 | fvmptg 5572 |
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑥) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
87 | 46, 85, 86 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑥) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
88 | 87, 85 | eqeltrd 2247 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑥) ∈ 𝑆) |
89 | 6 | adantlr 474 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
90 | 1 | adantlr 474 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
91 | 19, 45, 88, 89, 90 | seq3fveq 10427 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
92 | 18, 91 | eqtr3d 2205 |
. . 3
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
93 | 17, 92 | sylan2br 286 |
. 2
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
94 | 12, 93 | exlimddv 1891 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |