| Step | Hyp | Ref
 | Expression | 
| 1 |   | iseqf1o.1 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 2 |   | iseqf1o.2 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | 
| 3 |   | iseqf1o.3 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| 4 |   | iseqf1o.4 | 
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 5 |   | iseqf1o.6 | 
. . 3
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 6 |   | iseqf1o.7 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) | 
| 7 |   | iseqf1o.l | 
. . 3
⊢ 𝐿 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐹‘𝑥)), (𝐺‘𝑀))) | 
| 8 |   | breq1 4036 | 
. . . . 5
⊢ (𝑎 = 𝑥 → (𝑎 ≤ 𝑁 ↔ 𝑥 ≤ 𝑁)) | 
| 9 |   | 2fveq3 5563 | 
. . . . 5
⊢ (𝑎 = 𝑥 → (𝐺‘(𝑓‘𝑎)) = (𝐺‘(𝑓‘𝑥))) | 
| 10 | 8, 9 | ifbieq1d 3583 | 
. . . 4
⊢ (𝑎 = 𝑥 → if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) | 
| 11 | 10 | cbvmptv 4129 | 
. . 3
⊢ (𝑎 ∈
(ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) | 
| 12 | 1, 2, 3, 4, 5, 6, 7, 11 | seq3f1olemp 10607 | 
. 2
⊢ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) | 
| 13 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑏 = 𝑥 → (𝑓‘𝑏) = (𝑓‘𝑥)) | 
| 14 |   | id 19 | 
. . . . . 6
⊢ (𝑏 = 𝑥 → 𝑏 = 𝑥) | 
| 15 | 13, 14 | eqeq12d 2211 | 
. . . . 5
⊢ (𝑏 = 𝑥 → ((𝑓‘𝑏) = 𝑏 ↔ (𝑓‘𝑥) = 𝑥)) | 
| 16 | 15 | cbvralv 2729 | 
. . . 4
⊢
(∀𝑏 ∈
(𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ↔ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥) | 
| 17 | 16 | 3anbi2i 1193 | 
. . 3
⊢ ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) | 
| 18 |   | simpr3 1007 | 
. . . 4
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) | 
| 19 | 4 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 20 |   | elfzuz 10096 | 
. . . . . . . 8
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 21 | 20 | adantl 277 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 22 |   | elfzle2 10103 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ≤ 𝑁) | 
| 23 | 22 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ≤ 𝑁) | 
| 24 | 23 | iftrued 3568 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀)) = (𝐺‘(𝑓‘𝑘))) | 
| 25 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑘 → (𝑓‘𝑏) = (𝑓‘𝑘)) | 
| 26 |   | id 19 | 
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑘 → 𝑏 = 𝑘) | 
| 27 | 25, 26 | eqeq12d 2211 | 
. . . . . . . . . . 11
⊢ (𝑏 = 𝑘 → ((𝑓‘𝑏) = 𝑏 ↔ (𝑓‘𝑘) = 𝑘)) | 
| 28 |   | simplr2 1042 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏) | 
| 29 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) | 
| 30 | 27, 28, 29 | rspcdva 2873 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑓‘𝑘) = 𝑘) | 
| 31 | 30 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓‘𝑘)) = (𝐺‘𝑘)) | 
| 32 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) | 
| 33 | 32 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) ∈ 𝑆 ↔ (𝐺‘𝑘) ∈ 𝑆)) | 
| 34 | 6 | ralrimiva 2570 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) | 
| 35 | 34 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) | 
| 36 | 33, 35, 21 | rspcdva 2873 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) | 
| 37 | 31, 36 | eqeltrd 2273 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘(𝑓‘𝑘)) ∈ 𝑆) | 
| 38 | 24, 37 | eqeltrd 2273 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀)) ∈ 𝑆) | 
| 39 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → (𝑎 ≤ 𝑁 ↔ 𝑘 ≤ 𝑁)) | 
| 40 |   | 2fveq3 5563 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → (𝐺‘(𝑓‘𝑎)) = (𝐺‘(𝑓‘𝑘))) | 
| 41 | 39, 40 | ifbieq1d 3583 | 
. . . . . . . 8
⊢ (𝑎 = 𝑘 → if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)) = if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀))) | 
| 42 |   | eqid 2196 | 
. . . . . . . 8
⊢ (𝑎 ∈
(ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))) = (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))) | 
| 43 | 41, 42 | fvmptg 5637 | 
. . . . . . 7
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑘) = if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀))) | 
| 44 | 21, 38, 43 | syl2anc 411 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑘) = if(𝑘 ≤ 𝑁, (𝐺‘(𝑓‘𝑘)), (𝐺‘𝑀))) | 
| 45 | 44, 24, 31 | 3eqtrd 2233 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑘) = (𝐺‘𝑘)) | 
| 46 |   | simpr 110 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) | 
| 47 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑎 = (𝑓‘𝑥) → (𝐺‘𝑎) = (𝐺‘(𝑓‘𝑥))) | 
| 48 | 47 | eleq1d 2265 | 
. . . . . . . . 9
⊢ (𝑎 = (𝑓‘𝑥) → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑓‘𝑥)) ∈ 𝑆)) | 
| 49 | 34 | ad3antrrr 492 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) | 
| 50 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (𝐺‘𝑎) = (𝐺‘𝑥)) | 
| 51 | 50 | eleq1d 2265 | 
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘𝑥) ∈ 𝑆)) | 
| 52 | 51 | cbvralv 2729 | 
. . . . . . . . . 10
⊢
(∀𝑎 ∈
(ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆 ↔ ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) | 
| 53 | 49, 52 | sylibr 134 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) | 
| 54 |   | simpr1 1005 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 55 | 54 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 56 |   | f1of 5504 | 
. . . . . . . . . . . 12
⊢ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 57 | 55, 56 | syl 14 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑓:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 58 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ≤ 𝑁) | 
| 59 | 46 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) | 
| 60 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | 
| 61 | 4, 60 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 62 | 61 | ad3antrrr 492 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑁 ∈ ℤ) | 
| 63 |   | elfz5 10092 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ≤ 𝑁)) | 
| 64 | 59, 62, 63 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ≤ 𝑁)) | 
| 65 | 58, 64 | mpbird 167 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ∈ (𝑀...𝑁)) | 
| 66 | 57, 65 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑓‘𝑥) ∈ (𝑀...𝑁)) | 
| 67 |   | elfzuz 10096 | 
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ (𝑀...𝑁) → (𝑓‘𝑥) ∈ (ℤ≥‘𝑀)) | 
| 68 | 66, 67 | syl 14 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑓‘𝑥) ∈ (ℤ≥‘𝑀)) | 
| 69 | 48, 53, 68 | rspcdva 2873 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝐺‘(𝑓‘𝑥)) ∈ 𝑆) | 
| 70 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝑀 → (𝐺‘𝑎) = (𝐺‘𝑀)) | 
| 71 | 70 | eleq1d 2265 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑀 → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘𝑀) ∈ 𝑆)) | 
| 72 | 34, 52 | sylibr 134 | 
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) | 
| 73 | 72 | ad3antrrr 492 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) | 
| 74 |   | eluzel2 9606 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 75 | 4, 74 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 76 | 75 | ad3antrrr 492 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → 𝑀 ∈ ℤ) | 
| 77 |   | uzid 9615 | 
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) | 
| 78 | 76, 77 | syl 14 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → 𝑀 ∈ (ℤ≥‘𝑀)) | 
| 79 | 71, 73, 78 | rspcdva 2873 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → (𝐺‘𝑀) ∈ 𝑆) | 
| 80 |   | eluzelz 9610 | 
. . . . . . . . . 10
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ ℤ) | 
| 81 | 80 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ ℤ) | 
| 82 | 61 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) | 
| 83 |   | zdcle 9402 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑥 ≤
𝑁) | 
| 84 | 81, 82, 83 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → DECID
𝑥 ≤ 𝑁) | 
| 85 | 69, 79, 84 | ifcldadc 3590 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) ∈ 𝑆) | 
| 86 | 10, 42 | fvmptg 5637 | 
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) ∈ 𝑆) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑥) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) | 
| 87 | 46, 85, 86 | syl2anc 411 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑥) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) | 
| 88 | 87, 85 | eqeltrd 2273 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀)))‘𝑥) ∈ 𝑆) | 
| 89 | 6 | adantlr 477 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) | 
| 90 | 1 | adantlr 477 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 91 | 19, 45, 88, 89, 90 | seq3fveq 10571 | 
. . . 4
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | 
| 92 | 18, 91 | eqtr3d 2231 | 
. . 3
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑏 ∈ (𝑀...𝑁)(𝑓‘𝑏) = 𝑏 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | 
| 93 | 17, 92 | sylan2br 288 | 
. 2
⊢ ((𝜑 ∧ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , (𝑎 ∈ (ℤ≥‘𝑀) ↦ if(𝑎 ≤ 𝑁, (𝐺‘(𝑓‘𝑎)), (𝐺‘𝑀))))‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | 
| 94 | 12, 93 | exlimddv 1913 | 
1
⊢ (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |