ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemp GIF version

Theorem seq3f1olemp 10667
Description: Lemma for seq3f1o 10669. Existence of a constant permutation of (𝑀...𝑁) which leads to the same sum as the permutation 𝐹 itself. (Contributed by Jim Kingdon, 18-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1o.l 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
iseqf1o.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1olemp (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
Distinct variable groups:   + ,𝑓,𝑥,𝑦,𝑧   𝑓,𝐹,𝑥,𝑦,𝑧   𝑓,𝐿,𝑥,𝑦,𝑧   𝑓,𝑀,𝑥,𝑦,𝑧   𝑓,𝑁,𝑥,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑆,𝑓,𝑥,𝑦,𝑧   𝜑,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥
Allowed substitution hints:   𝑃(𝑓)   𝐺(𝑦,𝑧)

Proof of Theorem seq3f1olemp
Dummy variables 𝑔 𝑘 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10161 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 oveq2 5959 . . . . . . 7 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
54raleqdv 2709 . . . . . 6 (𝑤 = 𝑀 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥))
653anbi2d 1330 . . . . 5 (𝑤 = 𝑀 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
76exbidv 1849 . . . 4 (𝑤 = 𝑀 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
87imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
9 oveq2 5959 . . . . . . 7 (𝑤 = 𝑘 → (𝑀...𝑤) = (𝑀...𝑘))
109raleqdv 2709 . . . . . 6 (𝑤 = 𝑘 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥))
11103anbi2d 1330 . . . . 5 (𝑤 = 𝑘 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1211exbidv 1849 . . . 4 (𝑤 = 𝑘 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1312imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
14 oveq2 5959 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑀...𝑤) = (𝑀...(𝑘 + 1)))
1514raleqdv 2709 . . . . . 6 (𝑤 = (𝑘 + 1) → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥))
16153anbi2d 1330 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1716exbidv 1849 . . . 4 (𝑤 = (𝑘 + 1) → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1817imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
19 oveq2 5959 . . . . . . 7 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2019raleqdv 2709 . . . . . 6 (𝑤 = 𝑁 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥))
21203anbi2d 1330 . . . . 5 (𝑤 = 𝑁 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
2221exbidv 1849 . . . 4 (𝑤 = 𝑁 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
2322imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
24 iseqf1o.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
25 iseqf1o.2 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
26 iseqf1o.3 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
27 iseqf1o.6 . . . . 5 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
28 iseqf1o.7 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
29 eluzfz1 10160 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
301, 29syl 14 . . . . 5 (𝜑𝑀 ∈ (𝑀...𝑁))
31 ral0 3563 . . . . . . 7 𝑥 ∈ ∅ (𝐹𝑥) = 𝑥
32 fzo0 10299 . . . . . . . 8 (𝑀..^𝑀) = ∅
3332raleqi 2707 . . . . . . 7 (∀𝑥 ∈ (𝑀..^𝑀)(𝐹𝑥) = 𝑥 ↔ ∀𝑥 ∈ ∅ (𝐹𝑥) = 𝑥)
3431, 33mpbir 146 . . . . . 6 𝑥 ∈ (𝑀..^𝑀)(𝐹𝑥) = 𝑥
3534a1i 9 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝑀..^𝑀)(𝐹𝑥) = 𝑥)
36 f1of 5529 . . . . . . . . . 10 (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
3727, 36syl 14 . . . . . . . . 9 (𝜑𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
38 eluzel2 9660 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
391, 38syl 14 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
40 eluzelz 9664 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
411, 40syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
4239, 41fzfigd 10583 . . . . . . . . 9 (𝜑 → (𝑀...𝑁) ∈ Fin)
43 fex 5820 . . . . . . . . 9 ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐹 ∈ V)
4437, 42, 43syl2anc 411 . . . . . . . 8 (𝜑𝐹 ∈ V)
45 fveq1 5582 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4645fveq2d 5587 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝐹𝑥)))
4746ifeq1d 3589 . . . . . . . . . . 11 (𝑓 = 𝐹 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
4847mpteq2dv 4139 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀))))
49 iseqf1o.p . . . . . . . . . 10 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
50 iseqf1o.l . . . . . . . . . 10 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
5148, 49, 503eqtr4g 2264 . . . . . . . . 9 (𝑓 = 𝐹𝑃 = 𝐿)
5251adantl 277 . . . . . . . 8 ((𝜑𝑓 = 𝐹) → 𝑃 = 𝐿)
5344, 52csbied 3141 . . . . . . 7 (𝜑𝐹 / 𝑓𝑃 = 𝐿)
5453seqeq3d 10607 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹 / 𝑓𝑃) = seq𝑀( + , 𝐿))
5554fveq1d 5585 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
5624, 25, 26, 1, 27, 28, 30, 27, 35, 55, 49seq3f1olemstep 10666 . . . 4 (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
5756a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
58 nfv 1552 . . . . . . . 8 𝑔(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
59 nfv 1552 . . . . . . . . 9 𝑓 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)
60 nfv 1552 . . . . . . . . 9 𝑓𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥
61 nfcv 2349 . . . . . . . . . . . 12 𝑓𝑀
62 nfcv 2349 . . . . . . . . . . . 12 𝑓 +
63 nfcsb1v 3127 . . . . . . . . . . . 12 𝑓𝑔 / 𝑓𝑃
6461, 62, 63nfseq 10609 . . . . . . . . . . 11 𝑓seq𝑀( + , 𝑔 / 𝑓𝑃)
65 nfcv 2349 . . . . . . . . . . 11 𝑓𝑁
6664, 65nffv 5593 . . . . . . . . . 10 𝑓(seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁)
6766nfeq1 2359 . . . . . . . . 9 𝑓(seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)
6859, 60, 67nf3an 1590 . . . . . . . 8 𝑓(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
69 f1oeq1 5517 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
70 fveq1 5582 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
7170eqeq1d 2215 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓𝑥) = 𝑥 ↔ (𝑔𝑥) = 𝑥))
7271ralbidv 2507 . . . . . . . . 9 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥))
73 csbeq1a 3103 . . . . . . . . . . . 12 (𝑓 = 𝑔𝑃 = 𝑔 / 𝑓𝑃)
7473seqeq3d 10607 . . . . . . . . . . 11 (𝑓 = 𝑔 → seq𝑀( + , 𝑃) = seq𝑀( + , 𝑔 / 𝑓𝑃))
7574fveq1d 5585 . . . . . . . . . 10 (𝑓 = 𝑔 → (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁))
7675eqeq1d 2215 . . . . . . . . 9 (𝑓 = 𝑔 → ((seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁) ↔ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
7769, 72, 763anbi123d 1325 . . . . . . . 8 (𝑓 = 𝑔 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
7858, 68, 77cbvex 1780 . . . . . . 7 (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
79 fveq2 5583 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑔𝑥) = (𝑔𝑎))
80 id 19 . . . . . . . . . . 11 (𝑥 = 𝑎𝑥 = 𝑎)
8179, 80eqeq12d 2221 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝑔𝑥) = 𝑥 ↔ (𝑔𝑎) = 𝑎))
8281cbvralv 2739 . . . . . . . . 9 (∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ↔ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎)
83823anbi2i 1194 . . . . . . . 8 ((𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
8483exbii 1629 . . . . . . 7 (∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
8578, 84bitri 184 . . . . . 6 (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
86 simpll 527 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝜑)
8786, 24sylan 283 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8886, 25sylan 283 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
8986, 26sylan 283 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
901ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
9127ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
9286, 28sylan 283 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
93 fzofzp1 10363 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
9493ad2antlr 489 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (𝑘 + 1) ∈ (𝑀...𝑁))
95 simpr1 1006 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
96 simpr2 1007 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎)
9796, 82sylibr 134 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥)
98 elfzoelz 10276 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
9998ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑘 ∈ ℤ)
100 fzval3 10340 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → (𝑀...𝑘) = (𝑀..^(𝑘 + 1)))
101100raleqdv 2709 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔𝑥) = 𝑥))
10299, 101syl 14 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔𝑥) = 𝑥))
10397, 102mpbid 147 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔𝑥) = 𝑥)
104 simpr3 1008 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
10587, 88, 89, 90, 91, 92, 94, 95, 103, 104, 49seq3f1olemstep 10666 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
106105ex 115 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
107106exlimdv 1843 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
10885, 107biimtrid 152 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
109108expcom 116 . . . 4 (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
110109a2d 26 . . 3 (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
1118, 13, 18, 23, 57, 110fzind2 10375 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1123, 111mpcom 36 1 (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  Vcvv 2773  csb 3094  c0 3461  ifcif 3572   class class class wbr 4047  cmpt 4109  wf 5272  1-1-ontowf1o 5275  cfv 5276  (class class class)co 5951  Fincfn 6834  1c1 7933   + caddc 7935  cle 8115  cz 9379  cuz 9655  ...cfz 10137  ..^cfzo 10271  seqcseq 10599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-er 6627  df-en 6835  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-fzo 10272  df-seqfrec 10600
This theorem is referenced by:  seq3f1oleml  10668
  Copyright terms: Public domain W3C validator