ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemp GIF version

Theorem seq3f1olemp 9931
Description: Lemma for seq3f1o 9933. Existence of a constant permutation of (𝑀...𝑁) which leads to the same sum as the permutation 𝐹 itself. (Contributed by Jim Kingdon, 18-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1o.l 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
iseqf1o.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1olemp (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
Distinct variable groups:   + ,𝑓,𝑥,𝑦,𝑧   𝑓,𝐹,𝑥,𝑦,𝑧   𝑓,𝐿,𝑥,𝑦,𝑧   𝑓,𝑀,𝑥,𝑦,𝑧   𝑓,𝑁,𝑥,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑆,𝑓,𝑥,𝑦,𝑧   𝜑,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥
Allowed substitution hints:   𝑃(𝑓)   𝐺(𝑦,𝑧)

Proof of Theorem seq3f1olemp
Dummy variables 𝑔 𝑘 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9446 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 oveq2 5660 . . . . . . 7 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
54raleqdv 2568 . . . . . 6 (𝑤 = 𝑀 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥))
653anbi2d 1253 . . . . 5 (𝑤 = 𝑀 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
76exbidv 1753 . . . 4 (𝑤 = 𝑀 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
87imbi2d 228 . . 3 (𝑤 = 𝑀 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
9 oveq2 5660 . . . . . . 7 (𝑤 = 𝑘 → (𝑀...𝑤) = (𝑀...𝑘))
109raleqdv 2568 . . . . . 6 (𝑤 = 𝑘 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥))
11103anbi2d 1253 . . . . 5 (𝑤 = 𝑘 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1211exbidv 1753 . . . 4 (𝑤 = 𝑘 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1312imbi2d 228 . . 3 (𝑤 = 𝑘 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
14 oveq2 5660 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑀...𝑤) = (𝑀...(𝑘 + 1)))
1514raleqdv 2568 . . . . . 6 (𝑤 = (𝑘 + 1) → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥))
16153anbi2d 1253 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1716exbidv 1753 . . . 4 (𝑤 = (𝑘 + 1) → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1817imbi2d 228 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
19 oveq2 5660 . . . . . . 7 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2019raleqdv 2568 . . . . . 6 (𝑤 = 𝑁 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥))
21203anbi2d 1253 . . . . 5 (𝑤 = 𝑁 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
2221exbidv 1753 . . . 4 (𝑤 = 𝑁 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
2322imbi2d 228 . . 3 (𝑤 = 𝑁 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
24 iseqf1o.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
25 iseqf1o.2 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
26 iseqf1o.3 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
27 iseqf1o.6 . . . . 5 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
28 iseqf1o.7 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
29 eluzfz1 9445 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
301, 29syl 14 . . . . 5 (𝜑𝑀 ∈ (𝑀...𝑁))
31 ral0 3383 . . . . . . 7 𝑥 ∈ ∅ (𝐹𝑥) = 𝑥
32 fzo0 9579 . . . . . . . 8 (𝑀..^𝑀) = ∅
3332raleqi 2566 . . . . . . 7 (∀𝑥 ∈ (𝑀..^𝑀)(𝐹𝑥) = 𝑥 ↔ ∀𝑥 ∈ ∅ (𝐹𝑥) = 𝑥)
3431, 33mpbir 144 . . . . . 6 𝑥 ∈ (𝑀..^𝑀)(𝐹𝑥) = 𝑥
3534a1i 9 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝑀..^𝑀)(𝐹𝑥) = 𝑥)
36 f1of 5253 . . . . . . . . . 10 (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
3727, 36syl 14 . . . . . . . . 9 (𝜑𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
38 eluzel2 9024 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
391, 38syl 14 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
40 eluzelz 9028 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
411, 40syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
4239, 41fzfigd 9838 . . . . . . . . 9 (𝜑 → (𝑀...𝑁) ∈ Fin)
43 fex 5524 . . . . . . . . 9 ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐹 ∈ V)
4437, 42, 43syl2anc 403 . . . . . . . 8 (𝜑𝐹 ∈ V)
45 fveq1 5304 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4645fveq2d 5309 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝐹𝑥)))
4746ifeq1d 3408 . . . . . . . . . . 11 (𝑓 = 𝐹 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
4847mpteq2dv 3929 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀))))
49 iseqf1o.p . . . . . . . . . 10 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
50 iseqf1o.l . . . . . . . . . 10 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
5148, 49, 503eqtr4g 2145 . . . . . . . . 9 (𝑓 = 𝐹𝑃 = 𝐿)
5251adantl 271 . . . . . . . 8 ((𝜑𝑓 = 𝐹) → 𝑃 = 𝐿)
5344, 52csbied 2974 . . . . . . 7 (𝜑𝐹 / 𝑓𝑃 = 𝐿)
5453seqeq3d 9866 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹 / 𝑓𝑃) = seq𝑀( + , 𝐿))
5554fveq1d 5307 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
5624, 25, 26, 1, 27, 28, 30, 27, 35, 55, 49seq3f1olemstep 9930 . . . 4 (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
5756a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
58 nfv 1466 . . . . . . . 8 𝑔(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
59 nfv 1466 . . . . . . . . 9 𝑓 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)
60 nfv 1466 . . . . . . . . 9 𝑓𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥
61 nfcv 2228 . . . . . . . . . . . 12 𝑓𝑀
62 nfcv 2228 . . . . . . . . . . . 12 𝑓 +
63 nfcsb1v 2963 . . . . . . . . . . . 12 𝑓𝑔 / 𝑓𝑃
6461, 62, 63nfseq 9869 . . . . . . . . . . 11 𝑓seq𝑀( + , 𝑔 / 𝑓𝑃)
65 nfcv 2228 . . . . . . . . . . 11 𝑓𝑁
6664, 65nffv 5315 . . . . . . . . . 10 𝑓(seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁)
6766nfeq1 2238 . . . . . . . . 9 𝑓(seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)
6859, 60, 67nf3an 1503 . . . . . . . 8 𝑓(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
69 f1oeq1 5244 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
70 fveq1 5304 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
7170eqeq1d 2096 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓𝑥) = 𝑥 ↔ (𝑔𝑥) = 𝑥))
7271ralbidv 2380 . . . . . . . . 9 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥))
73 csbeq1a 2941 . . . . . . . . . . . 12 (𝑓 = 𝑔𝑃 = 𝑔 / 𝑓𝑃)
7473seqeq3d 9866 . . . . . . . . . . 11 (𝑓 = 𝑔 → seq𝑀( + , 𝑃) = seq𝑀( + , 𝑔 / 𝑓𝑃))
7574fveq1d 5307 . . . . . . . . . 10 (𝑓 = 𝑔 → (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁))
7675eqeq1d 2096 . . . . . . . . 9 (𝑓 = 𝑔 → ((seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁) ↔ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
7769, 72, 763anbi123d 1248 . . . . . . . 8 (𝑓 = 𝑔 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
7858, 68, 77cbvex 1686 . . . . . . 7 (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
79 fveq2 5305 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑔𝑥) = (𝑔𝑎))
80 id 19 . . . . . . . . . . 11 (𝑥 = 𝑎𝑥 = 𝑎)
8179, 80eqeq12d 2102 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝑔𝑥) = 𝑥 ↔ (𝑔𝑎) = 𝑎))
8281cbvralv 2590 . . . . . . . . 9 (∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ↔ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎)
83823anbi2i 1135 . . . . . . . 8 ((𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
8483exbii 1541 . . . . . . 7 (∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
8578, 84bitri 182 . . . . . 6 (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
86 simpll 496 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝜑)
8786, 24sylan 277 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8886, 25sylan 277 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
8986, 26sylan 277 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
901ad2antrr 472 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
9127ad2antrr 472 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
9286, 28sylan 277 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
93 fzofzp1 9638 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
9493ad2antlr 473 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (𝑘 + 1) ∈ (𝑀...𝑁))
95 simpr1 949 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
96 simpr2 950 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎)
9796, 82sylibr 132 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥)
98 elfzoelz 9558 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
9998ad2antlr 473 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑘 ∈ ℤ)
100 fzval3 9615 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → (𝑀...𝑘) = (𝑀..^(𝑘 + 1)))
101100raleqdv 2568 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔𝑥) = 𝑥))
10299, 101syl 14 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔𝑥) = 𝑥))
10397, 102mpbid 145 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔𝑥) = 𝑥)
104 simpr3 951 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
10587, 88, 89, 90, 91, 92, 94, 95, 103, 104, 49seq3f1olemstep 9930 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
106105ex 113 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
107106exlimdv 1747 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
10885, 107syl5bi 150 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
109108expcom 114 . . . 4 (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
110109a2d 26 . . 3 (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
1118, 13, 18, 23, 57, 110fzind2 9650 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1123, 111mpcom 36 1 (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924   = wceq 1289  wex 1426  wcel 1438  wral 2359  Vcvv 2619  csb 2933  c0 3286  ifcif 3393   class class class wbr 3845  cmpt 3899  wf 5011  1-1-ontowf1o 5014  cfv 5015  (class class class)co 5652  Fincfn 6457  1c1 7351   + caddc 7353  cle 7523  cz 8750  cuz 9019  ...cfz 9424  ..^cfzo 9553  seqcseq 9852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-1o 6181  df-er 6292  df-en 6458  df-fin 6460  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854
This theorem is referenced by:  seq3f1oleml  9932
  Copyright terms: Public domain W3C validator