ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemp GIF version

Theorem seq3f1olemp 10745
Description: Lemma for seq3f1o 10747. Existence of a constant permutation of (𝑀...𝑁) which leads to the same sum as the permutation 𝐹 itself. (Contributed by Jim Kingdon, 18-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1o.l 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
iseqf1o.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1olemp (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
Distinct variable groups:   + ,𝑓,𝑥,𝑦,𝑧   𝑓,𝐹,𝑥,𝑦,𝑧   𝑓,𝐿,𝑥,𝑦,𝑧   𝑓,𝑀,𝑥,𝑦,𝑧   𝑓,𝑁,𝑥,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑆,𝑓,𝑥,𝑦,𝑧   𝜑,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥
Allowed substitution hints:   𝑃(𝑓)   𝐺(𝑦,𝑧)

Proof of Theorem seq3f1olemp
Dummy variables 𝑔 𝑘 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10236 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 oveq2 6015 . . . . . . 7 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
54raleqdv 2734 . . . . . 6 (𝑤 = 𝑀 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥))
653anbi2d 1351 . . . . 5 (𝑤 = 𝑀 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
76exbidv 1871 . . . 4 (𝑤 = 𝑀 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
87imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
9 oveq2 6015 . . . . . . 7 (𝑤 = 𝑘 → (𝑀...𝑤) = (𝑀...𝑘))
109raleqdv 2734 . . . . . 6 (𝑤 = 𝑘 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥))
11103anbi2d 1351 . . . . 5 (𝑤 = 𝑘 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1211exbidv 1871 . . . 4 (𝑤 = 𝑘 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1312imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
14 oveq2 6015 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑀...𝑤) = (𝑀...(𝑘 + 1)))
1514raleqdv 2734 . . . . . 6 (𝑤 = (𝑘 + 1) → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥))
16153anbi2d 1351 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1716exbidv 1871 . . . 4 (𝑤 = (𝑘 + 1) → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1817imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
19 oveq2 6015 . . . . . . 7 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2019raleqdv 2734 . . . . . 6 (𝑤 = 𝑁 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥))
21203anbi2d 1351 . . . . 5 (𝑤 = 𝑁 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
2221exbidv 1871 . . . 4 (𝑤 = 𝑁 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
2322imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
24 iseqf1o.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
25 iseqf1o.2 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
26 iseqf1o.3 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
27 iseqf1o.6 . . . . 5 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
28 iseqf1o.7 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
29 eluzfz1 10235 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
301, 29syl 14 . . . . 5 (𝜑𝑀 ∈ (𝑀...𝑁))
31 ral0 3593 . . . . . . 7 𝑥 ∈ ∅ (𝐹𝑥) = 𝑥
32 fzo0 10374 . . . . . . . 8 (𝑀..^𝑀) = ∅
3332raleqi 2732 . . . . . . 7 (∀𝑥 ∈ (𝑀..^𝑀)(𝐹𝑥) = 𝑥 ↔ ∀𝑥 ∈ ∅ (𝐹𝑥) = 𝑥)
3431, 33mpbir 146 . . . . . 6 𝑥 ∈ (𝑀..^𝑀)(𝐹𝑥) = 𝑥
3534a1i 9 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝑀..^𝑀)(𝐹𝑥) = 𝑥)
36 f1of 5574 . . . . . . . . . 10 (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
3727, 36syl 14 . . . . . . . . 9 (𝜑𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
38 eluzel2 9735 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
391, 38syl 14 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
40 eluzelz 9739 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
411, 40syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
4239, 41fzfigd 10661 . . . . . . . . 9 (𝜑 → (𝑀...𝑁) ∈ Fin)
43 fex 5872 . . . . . . . . 9 ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐹 ∈ V)
4437, 42, 43syl2anc 411 . . . . . . . 8 (𝜑𝐹 ∈ V)
45 fveq1 5628 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4645fveq2d 5633 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝐹𝑥)))
4746ifeq1d 3620 . . . . . . . . . . 11 (𝑓 = 𝐹 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
4847mpteq2dv 4175 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀))))
49 iseqf1o.p . . . . . . . . . 10 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
50 iseqf1o.l . . . . . . . . . 10 𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))
5148, 49, 503eqtr4g 2287 . . . . . . . . 9 (𝑓 = 𝐹𝑃 = 𝐿)
5251adantl 277 . . . . . . . 8 ((𝜑𝑓 = 𝐹) → 𝑃 = 𝐿)
5344, 52csbied 3171 . . . . . . 7 (𝜑𝐹 / 𝑓𝑃 = 𝐿)
5453seqeq3d 10685 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹 / 𝑓𝑃) = seq𝑀( + , 𝐿))
5554fveq1d 5631 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
5624, 25, 26, 1, 27, 28, 30, 27, 35, 55, 49seq3f1olemstep 10744 . . . 4 (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
5756a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
58 nfv 1574 . . . . . . . 8 𝑔(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
59 nfv 1574 . . . . . . . . 9 𝑓 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)
60 nfv 1574 . . . . . . . . 9 𝑓𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥
61 nfcv 2372 . . . . . . . . . . . 12 𝑓𝑀
62 nfcv 2372 . . . . . . . . . . . 12 𝑓 +
63 nfcsb1v 3157 . . . . . . . . . . . 12 𝑓𝑔 / 𝑓𝑃
6461, 62, 63nfseq 10687 . . . . . . . . . . 11 𝑓seq𝑀( + , 𝑔 / 𝑓𝑃)
65 nfcv 2372 . . . . . . . . . . 11 𝑓𝑁
6664, 65nffv 5639 . . . . . . . . . 10 𝑓(seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁)
6766nfeq1 2382 . . . . . . . . 9 𝑓(seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)
6859, 60, 67nf3an 1612 . . . . . . . 8 𝑓(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
69 f1oeq1 5562 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
70 fveq1 5628 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
7170eqeq1d 2238 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓𝑥) = 𝑥 ↔ (𝑔𝑥) = 𝑥))
7271ralbidv 2530 . . . . . . . . 9 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥))
73 csbeq1a 3133 . . . . . . . . . . . 12 (𝑓 = 𝑔𝑃 = 𝑔 / 𝑓𝑃)
7473seqeq3d 10685 . . . . . . . . . . 11 (𝑓 = 𝑔 → seq𝑀( + , 𝑃) = seq𝑀( + , 𝑔 / 𝑓𝑃))
7574fveq1d 5631 . . . . . . . . . 10 (𝑓 = 𝑔 → (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁))
7675eqeq1d 2238 . . . . . . . . 9 (𝑓 = 𝑔 → ((seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁) ↔ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
7769, 72, 763anbi123d 1346 . . . . . . . 8 (𝑓 = 𝑔 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
7858, 68, 77cbvex 1802 . . . . . . 7 (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
79 fveq2 5629 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑔𝑥) = (𝑔𝑎))
80 id 19 . . . . . . . . . . 11 (𝑥 = 𝑎𝑥 = 𝑎)
8179, 80eqeq12d 2244 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝑔𝑥) = 𝑥 ↔ (𝑔𝑎) = 𝑎))
8281cbvralv 2765 . . . . . . . . 9 (∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ↔ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎)
83823anbi2i 1215 . . . . . . . 8 ((𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
8483exbii 1651 . . . . . . 7 (∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
8578, 84bitri 184 . . . . . 6 (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
86 simpll 527 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝜑)
8786, 24sylan 283 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8886, 25sylan 283 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
8986, 26sylan 283 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
901ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
9127ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
9286, 28sylan 283 . . . . . . . . 9 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
93 fzofzp1 10441 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
9493ad2antlr 489 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (𝑘 + 1) ∈ (𝑀...𝑁))
95 simpr1 1027 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
96 simpr2 1028 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎)
9796, 82sylibr 134 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥)
98 elfzoelz 10351 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
9998ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑘 ∈ ℤ)
100 fzval3 10418 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → (𝑀...𝑘) = (𝑀..^(𝑘 + 1)))
101100raleqdv 2734 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔𝑥) = 𝑥))
10299, 101syl 14 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (∀𝑥 ∈ (𝑀...𝑘)(𝑔𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔𝑥) = 𝑥))
10397, 102mpbid 147 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔𝑥) = 𝑥)
104 simpr3 1029 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))
10587, 88, 89, 90, 91, 92, 94, 95, 103, 104, 49seq3f1olemstep 10744 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
106105ex 115 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
107106exlimdv 1865 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔𝑎) = 𝑎 ∧ (seq𝑀( + , 𝑔 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
10885, 107biimtrid 152 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
109108expcom 116 . . . 4 (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
110109a2d 26 . . 3 (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))))
1118, 13, 18, 23, 57, 110fzind2 10453 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))
1123, 111mpcom 36 1 (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  Vcvv 2799  csb 3124  c0 3491  ifcif 3602   class class class wbr 4083  cmpt 4145  wf 5314  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6007  Fincfn 6895  1c1 8008   + caddc 8010  cle 8190  cz 9454  cuz 9730  ...cfz 10212  ..^cfzo 10346  seqcseq 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-seqfrec 10678
This theorem is referenced by:  seq3f1oleml  10746
  Copyright terms: Public domain W3C validator