Step | Hyp | Ref
| Expression |
1 | | iseqf1o.4 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 9988 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀)) |
5 | 4 | raleqdv 2671 |
. . . . . 6
⊢ (𝑤 = 𝑀 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑀)(𝑓‘𝑥) = 𝑥)) |
6 | 5 | 3anbi2d 1312 |
. . . . 5
⊢ (𝑤 = 𝑀 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
7 | 6 | exbidv 1818 |
. . . 4
⊢ (𝑤 = 𝑀 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
8 | 7 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑀 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))) |
9 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝑀...𝑤) = (𝑀...𝑘)) |
10 | 9 | raleqdv 2671 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥)) |
11 | 10 | 3anbi2d 1312 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
12 | 11 | exbidv 1818 |
. . . 4
⊢ (𝑤 = 𝑘 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
13 | 12 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))) |
14 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → (𝑀...𝑤) = (𝑀...(𝑘 + 1))) |
15 | 14 | raleqdv 2671 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥)) |
16 | 15 | 3anbi2d 1312 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
17 | 16 | exbidv 1818 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
18 | 17 | imbi2d 229 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))) |
19 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁)) |
20 | 19 | raleqdv 2671 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥)) |
21 | 20 | 3anbi2d 1312 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
22 | 21 | exbidv 1818 |
. . . 4
⊢ (𝑤 = 𝑁 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
23 | 22 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑤)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ↔ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))) |
24 | | iseqf1o.1 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
25 | | iseqf1o.2 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
26 | | iseqf1o.3 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
27 | | iseqf1o.6 |
. . . . 5
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
28 | | iseqf1o.7 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
29 | | eluzfz1 9987 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
30 | 1, 29 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
31 | | ral0 3516 |
. . . . . . 7
⊢
∀𝑥 ∈
∅ (𝐹‘𝑥) = 𝑥 |
32 | | fzo0 10124 |
. . . . . . . 8
⊢ (𝑀..^𝑀) = ∅ |
33 | 32 | raleqi 2669 |
. . . . . . 7
⊢
(∀𝑥 ∈
(𝑀..^𝑀)(𝐹‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ ∅ (𝐹‘𝑥) = 𝑥) |
34 | 31, 33 | mpbir 145 |
. . . . . 6
⊢
∀𝑥 ∈
(𝑀..^𝑀)(𝐹‘𝑥) = 𝑥 |
35 | 34 | a1i 9 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝑀)(𝐹‘𝑥) = 𝑥) |
36 | | f1of 5442 |
. . . . . . . . . 10
⊢ (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁)) |
37 | 27, 36 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁)) |
38 | | eluzel2 9492 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
39 | 1, 38 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
40 | | eluzelz 9496 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
41 | 1, 40 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
42 | 39, 41 | fzfigd 10387 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
43 | | fex 5725 |
. . . . . . . . 9
⊢ ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐹 ∈ V) |
44 | 37, 42, 43 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ V) |
45 | | fveq1 5495 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
46 | 45 | fveq2d 5500 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝐺‘(𝑓‘𝑥)) = (𝐺‘(𝐹‘𝑥))) |
47 | 46 | ifeq1d 3543 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝐹‘𝑥)), (𝐺‘𝑀))) |
48 | 47 | mpteq2dv 4080 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐹‘𝑥)), (𝐺‘𝑀)))) |
49 | | iseqf1o.p |
. . . . . . . . . 10
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
50 | | iseqf1o.l |
. . . . . . . . . 10
⊢ 𝐿 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐹‘𝑥)), (𝐺‘𝑀))) |
51 | 48, 49, 50 | 3eqtr4g 2228 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → 𝑃 = 𝐿) |
52 | 51 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 = 𝐹) → 𝑃 = 𝐿) |
53 | 44, 52 | csbied 3095 |
. . . . . . 7
⊢ (𝜑 → ⦋𝐹 / 𝑓⦌𝑃 = 𝐿) |
54 | 53 | seqeq3d 10409 |
. . . . . 6
⊢ (𝜑 → seq𝑀( + , ⦋𝐹 / 𝑓⦌𝑃) = seq𝑀( + , 𝐿)) |
55 | 54 | fveq1d 5498 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , ⦋𝐹 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
56 | 24, 25, 26, 1, 27, 28, 30, 27, 35, 55, 49 | seq3f1olemstep 10457 |
. . . 4
⊢ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
57 | 56 | a1i 9 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑀)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
58 | | nfv 1521 |
. . . . . . . 8
⊢
Ⅎ𝑔(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
59 | | nfv 1521 |
. . . . . . . . 9
⊢
Ⅎ𝑓 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) |
60 | | nfv 1521 |
. . . . . . . . 9
⊢
Ⅎ𝑓∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥 |
61 | | nfcv 2312 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓𝑀 |
62 | | nfcv 2312 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓
+ |
63 | | nfcsb1v 3082 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓⦋𝑔 / 𝑓⦌𝑃 |
64 | 61, 62, 63 | nfseq 10411 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃) |
65 | | nfcv 2312 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓𝑁 |
66 | 64, 65 | nffv 5506 |
. . . . . . . . . 10
⊢
Ⅎ𝑓(seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) |
67 | 66 | nfeq1 2322 |
. . . . . . . . 9
⊢
Ⅎ𝑓(seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁) |
68 | 59, 60, 67 | nf3an 1559 |
. . . . . . . 8
⊢
Ⅎ𝑓(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
69 | | f1oeq1 5431 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
70 | | fveq1 5495 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑓‘𝑥) = (𝑔‘𝑥)) |
71 | 70 | eqeq1d 2179 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑥) = 𝑥 ↔ (𝑔‘𝑥) = 𝑥)) |
72 | 71 | ralbidv 2470 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥)) |
73 | | csbeq1a 3058 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → 𝑃 = ⦋𝑔 / 𝑓⦌𝑃) |
74 | 73 | seqeq3d 10409 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → seq𝑀( + , 𝑃) = seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)) |
75 | 74 | fveq1d 5498 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁)) |
76 | 75 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁) ↔ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
77 | 69, 72, 76 | 3anbi123d 1307 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
78 | 58, 68, 77 | cbvex 1749 |
. . . . . . 7
⊢
(∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
79 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (𝑔‘𝑥) = (𝑔‘𝑎)) |
80 | | id 19 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → 𝑥 = 𝑎) |
81 | 79, 80 | eqeq12d 2185 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → ((𝑔‘𝑥) = 𝑥 ↔ (𝑔‘𝑎) = 𝑎)) |
82 | 81 | cbvralv 2696 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(𝑀...𝑘)(𝑔‘𝑥) = 𝑥 ↔ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎) |
83 | 82 | 3anbi2i 1186 |
. . . . . . . 8
⊢ ((𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
84 | 83 | exbii 1598 |
. . . . . . 7
⊢
(∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
85 | 78, 84 | bitri 183 |
. . . . . 6
⊢
(∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
86 | | simpll 524 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝜑) |
87 | 86, 24 | sylan 281 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
88 | 86, 25 | sylan 281 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
89 | 86, 26 | sylan 281 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
90 | 1 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
91 | 27 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
92 | 86, 28 | sylan 281 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
93 | | fzofzp1 10183 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
94 | 93 | ad2antlr 486 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
95 | | simpr1 998 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
96 | | simpr2 999 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎) |
97 | 96, 82 | sylibr 133 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥) |
98 | | elfzoelz 10103 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ) |
99 | 98 | ad2antlr 486 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → 𝑘 ∈ ℤ) |
100 | | fzval3 10160 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℤ → (𝑀...𝑘) = (𝑀..^(𝑘 + 1))) |
101 | 100 | raleqdv 2671 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ →
(∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔‘𝑥) = 𝑥)) |
102 | 99, 101 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (∀𝑥 ∈ (𝑀...𝑘)(𝑔‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔‘𝑥) = 𝑥)) |
103 | 97, 102 | mpbid 146 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∀𝑥 ∈ (𝑀..^(𝑘 + 1))(𝑔‘𝑥) = 𝑥) |
104 | | simpr3 1000 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
105 | 87, 88, 89, 90, 91, 92, 94, 95, 103, 104, 49 | seq3f1olemstep 10457 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
106 | 105 | ex 114 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
107 | 106 | exlimdv 1812 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (∃𝑔(𝑔:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑎 ∈ (𝑀...𝑘)(𝑔‘𝑎) = 𝑎 ∧ (seq𝑀( + , ⦋𝑔 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
108 | 85, 107 | syl5bi 151 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
109 | 108 | expcom 115 |
. . . 4
⊢ (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → (∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))) |
110 | 109 | a2d 26 |
. . 3
⊢ (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑘)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))))) |
111 | 8, 13, 18, 23, 57, 110 | fzind2 10195 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
112 | 3, 111 | mpcom 36 |
1
⊢ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |