ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm13 GIF version

Theorem 3anidm13 1296
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1209 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1295 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  ltnsym  8017  npncan2  8158  ltsubpos  8385  leaddle0  8408  subge02  8409  halfaddsub  9124  avglt1  9128  pythagtriplem4  12233  pythagtriplem14  12242  rplogbid1  13916
  Copyright terms: Public domain W3C validator