ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm13 GIF version

Theorem 3anidm13 1309
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1212 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1308 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  ltnsym  8158  npncan2  8299  ltsubpos  8527  leaddle0  8550  subge02  8551  halfaddsub  9271  avglt1  9276  pythagtriplem4  12591  pythagtriplem14  12600  rplogbid1  15419
  Copyright terms: Public domain W3C validator