| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3anidm13 | GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) | 
| Ref | Expression | 
|---|---|
| 3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | 
| Ref | Expression | 
|---|---|
| 3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
| 2 | 1 | 3com23 1211 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | 
| 3 | 2 | 3anidm12 1306 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: ltnsym 8112 npncan2 8253 ltsubpos 8481 leaddle0 8504 subge02 8505 halfaddsub 9225 avglt1 9230 pythagtriplem4 12437 pythagtriplem14 12446 rplogbid1 15183 | 
| Copyright terms: Public domain | W3C validator |