![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltnsym | GIF version |
Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
ltnsym | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttr 8095 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐴) → 𝐴 < 𝐴)) | |
2 | 1 | 3anidm13 1307 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐴) → 𝐴 < 𝐴)) |
3 | 2 | expd 258 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐴 → 𝐴 < 𝐴))) |
4 | ltnr 8098 | . . 3 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
5 | 4 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐴) |
6 | con3 643 | . 2 ⊢ ((𝐵 < 𝐴 → 𝐴 < 𝐴) → (¬ 𝐴 < 𝐴 → ¬ 𝐵 < 𝐴)) | |
7 | 3, 5, 6 | syl6ci 1456 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 < clt 8056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-ltxr 8061 |
This theorem is referenced by: ltle 8109 ltnsymi 8121 elnnz 9330 zdclt 9397 xrltnsym 9862 qdclt 10318 mulgnegnn 13205 lgsval4a 15179 |
Copyright terms: Public domain | W3C validator |