| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltnsym | GIF version | ||
| Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| ltnsym | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttr 8166 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐴) → 𝐴 < 𝐴)) | |
| 2 | 1 | 3anidm13 1309 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐴) → 𝐴 < 𝐴)) |
| 3 | 2 | expd 258 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐴 → 𝐴 < 𝐴))) |
| 4 | ltnr 8169 | . . 3 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 5 | 4 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐴) |
| 6 | con3 643 | . 2 ⊢ ((𝐵 < 𝐴 → 𝐴 < 𝐴) → (¬ 𝐴 < 𝐴 → ¬ 𝐵 < 𝐴)) | |
| 7 | 3, 5, 6 | syl6ci 1466 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2177 class class class wbr 4051 ℝcr 7944 < clt 8127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltirr 8057 ax-pre-lttrn 8059 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-pnf 8129 df-mnf 8130 df-ltxr 8132 |
| This theorem is referenced by: ltle 8180 ltnsymi 8192 elnnz 9402 zdclt 9470 xrltnsym 9935 qdclt 10410 mulgnegnn 13543 lgsval4a 15574 |
| Copyright terms: Public domain | W3C validator |