Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltnsym | GIF version |
Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
ltnsym | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttr 7993 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐴) → 𝐴 < 𝐴)) | |
2 | 1 | 3anidm13 1291 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐴) → 𝐴 < 𝐴)) |
3 | 2 | expd 256 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐴 → 𝐴 < 𝐴))) |
4 | ltnr 7996 | . . 3 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
5 | 4 | adantr 274 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐴) |
6 | con3 637 | . 2 ⊢ ((𝐵 < 𝐴 → 𝐴 < 𝐴) → (¬ 𝐴 < 𝐴 → ¬ 𝐵 < 𝐴)) | |
7 | 3, 5, 6 | syl6ci 1438 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 < clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: ltle 8007 ltnsymi 8019 elnnz 9222 zdclt 9289 xrltnsym 9750 lgsval4a 13717 |
Copyright terms: Public domain | W3C validator |