Proof of Theorem pythagtriplem4
Step | Hyp | Ref
| Expression |
1 | | simp3r 1021 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ 𝐴) |
2 | | nnz 9231 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
3 | | nnz 9231 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
4 | | zsubcl 9253 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 − 𝐵) ∈ ℤ) |
5 | 2, 3, 4 | syl2anr 288 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
6 | 5 | 3adant1 1010 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
7 | 6 | 3ad2ant1 1013 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℤ) |
8 | | simp13 1024 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
9 | | simp12 1023 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
10 | 8, 9 | nnaddcld 8926 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℕ) |
11 | 10 | nnzd 9333 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℤ) |
12 | | gcddvds 11918 |
. . . . . . . . . 10
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵))) |
13 | 7, 11, 12 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵))) |
14 | 13 | simprd 113 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵)) |
15 | | breq1 3992 |
. . . . . . . . 9
⊢ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) ↔ 2 ∥ (𝐶 + 𝐵))) |
16 | 15 | biimpd 143 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) → 2 ∥ (𝐶 + 𝐵))) |
17 | 14, 16 | mpan9 279 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐶 + 𝐵)) |
18 | | 2z 9240 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
19 | | simpl13 1069 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℕ) |
20 | 19 | nnzd 9333 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℤ) |
21 | | simpl12 1068 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℕ) |
22 | 21 | nnzd 9333 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℤ) |
23 | 20, 22 | zaddcld 9338 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶 + 𝐵) ∈ ℤ) |
24 | 20, 22 | zsubcld 9339 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶 − 𝐵) ∈ ℤ) |
25 | | dvdsmultr1 11793 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ (𝐶 +
𝐵) ∈ ℤ ∧
(𝐶 − 𝐵) ∈ ℤ) → (2
∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵)))) |
26 | 18, 23, 24, 25 | mp3an2i 1337 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵)))) |
27 | 17, 26 | mpd 13 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
28 | 19 | nncnd 8892 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℂ) |
29 | 21 | nncnd 8892 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℂ) |
30 | | subsq 10582 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
31 | 28, 29, 30 | syl2anc 409 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
32 | 27, 31 | breqtrrd 4017 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶↑2) − (𝐵↑2))) |
33 | | simpl2 996 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
34 | 33 | oveq1d 5868 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
35 | | simpl11 1067 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℕ) |
36 | 35 | nnsqcld 10630 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℕ) |
37 | 36 | nncnd 8892 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℂ) |
38 | 21 | nnsqcld 10630 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℕ) |
39 | 38 | nncnd 8892 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℂ) |
40 | 37, 39 | pncand 8231 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
41 | 34, 40 | eqtr3d 2205 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2)) |
42 | 32, 41 | breqtrd 4015 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐴↑2)) |
43 | | nnz 9231 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
44 | 43 | 3ad2ant1 1013 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℤ) |
45 | 44 | 3ad2ant1 1013 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℤ) |
46 | 45 | adantr 274 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℤ) |
47 | | 2prm 12081 |
. . . . . 6
⊢ 2 ∈
ℙ |
48 | | 2nn 9039 |
. . . . . 6
⊢ 2 ∈
ℕ |
49 | | prmdvdsexp 12102 |
. . . . . 6
⊢ ((2
∈ ℙ ∧ 𝐴
∈ ℤ ∧ 2 ∈ ℕ) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴)) |
50 | 47, 48, 49 | mp3an13 1323 |
. . . . 5
⊢ (𝐴 ∈ ℤ → (2
∥ (𝐴↑2) ↔ 2
∥ 𝐴)) |
51 | 46, 50 | syl 14 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴)) |
52 | 42, 51 | mpbid 146 |
. . 3
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ 𝐴) |
53 | 1, 52 | mtand 660 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) |
54 | | neg1z 9244 |
. . . . . . . 8
⊢ -1 ∈
ℤ |
55 | | gcdaddm 11939 |
. . . . . . . 8
⊢ ((-1
∈ ℤ ∧ (𝐶
− 𝐵) ∈ ℤ
∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))))) |
56 | 54, 7, 11, 55 | mp3an2i 1337 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))))) |
57 | 8 | nncnd 8892 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ) |
58 | 9 | nncnd 8892 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ) |
59 | | pnncan 8160 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
60 | 59 | 3anidm23 1292 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
61 | | subcl 8118 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
62 | 61 | mulm1d 8329 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1
· (𝐶 − 𝐵)) = -(𝐶 − 𝐵)) |
63 | 62 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))) = ((𝐶 + 𝐵) + -(𝐶 − 𝐵))) |
64 | | addcl 7899 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ) |
65 | 64, 61 | negsubd 8236 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + -(𝐶 − 𝐵)) = ((𝐶 + 𝐵) − (𝐶 − 𝐵))) |
66 | 63, 65 | eqtrd 2203 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))) = ((𝐶 + 𝐵) − (𝐶 − 𝐵))) |
67 | | 2times 9006 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℂ → (2
· 𝐵) = (𝐵 + 𝐵)) |
68 | 67 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐵) = (𝐵 + 𝐵)) |
69 | 60, 66, 68 | 3eqtr4d 2213 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))) = (2 · 𝐵)) |
70 | 69 | oveq2d 5869 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵)))) = ((𝐶 − 𝐵) gcd (2 · 𝐵))) |
71 | 57, 58, 70 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵)))) = ((𝐶 − 𝐵) gcd (2 · 𝐵))) |
72 | 56, 71 | eqtrd 2203 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd (2 · 𝐵))) |
73 | 9 | nnzd 9333 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℤ) |
74 | | zmulcl 9265 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 𝐵
∈ ℤ) → (2 · 𝐵) ∈ ℤ) |
75 | 18, 73, 74 | sylancr 412 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐵) ∈
ℤ) |
76 | | gcddvds 11918 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ) →
(((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵))) |
77 | 7, 75, 76 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵))) |
78 | 77 | simprd 113 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵)) |
79 | 72, 78 | eqbrtrd 4011 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵)) |
80 | | 1z 9238 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
81 | | gcdaddm 11939 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ (𝐶
− 𝐵) ∈ ℤ
∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))))) |
82 | 80, 7, 11, 81 | mp3an2i 1337 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))))) |
83 | | ppncan 8161 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
84 | 83 | 3anidm13 1291 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
85 | 61 | mulid2d 7938 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1
· (𝐶 − 𝐵)) = (𝐶 − 𝐵)) |
86 | 85 | oveq2d 5869 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))) = ((𝐶 + 𝐵) + (𝐶 − 𝐵))) |
87 | | 2times 9006 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℂ → (2
· 𝐶) = (𝐶 + 𝐶)) |
88 | 87 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐶) = (𝐶 + 𝐶)) |
89 | 84, 86, 88 | 3eqtr4d 2213 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))) = (2 · 𝐶)) |
90 | 57, 58, 89 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))) = (2 · 𝐶)) |
91 | 90 | oveq2d 5869 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵)))) = ((𝐶 − 𝐵) gcd (2 · 𝐶))) |
92 | 82, 91 | eqtrd 2203 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd (2 · 𝐶))) |
93 | 8 | nnzd 9333 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℤ) |
94 | | zmulcl 9265 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 𝐶
∈ ℤ) → (2 · 𝐶) ∈ ℤ) |
95 | 18, 93, 94 | sylancr 412 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐶) ∈
ℤ) |
96 | | gcddvds 11918 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) →
(((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶))) |
97 | 7, 95, 96 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶))) |
98 | 97 | simprd 113 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶)) |
99 | 92, 98 | eqbrtrd 4011 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) |
100 | | nnaddcl 8898 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℕ) |
101 | 100 | nnne0d 8923 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0) |
102 | 101 | ancoms 266 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0) |
103 | 102 | 3adant1 1010 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0) |
104 | 103 | 3ad2ant1 1013 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ≠ 0) |
105 | 104 | neneqd 2361 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ (𝐶 + 𝐵) = 0) |
106 | 105 | intnand 926 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶 − 𝐵) = 0 ∧ (𝐶 + 𝐵) = 0)) |
107 | | gcdn0cl 11917 |
. . . . . . . 8
⊢ ((((𝐶 − 𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) ∧ ¬ ((𝐶 − 𝐵) = 0 ∧ (𝐶 + 𝐵) = 0)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) |
108 | 7, 11, 106, 107 | syl21anc 1232 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) |
109 | 108 | nnzd 9333 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ) |
110 | | dvdsgcd 11967 |
. . . . . 6
⊢ ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ ∧ (2
· 𝐶) ∈ ℤ)
→ ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶)))) |
111 | 109, 75, 95, 110 | syl3anc 1233 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶)))) |
112 | 79, 99, 111 | mp2and 431 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶))) |
113 | | 2nn0 9152 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
114 | | mulgcd 11971 |
. . . . . 6
⊢ ((2
∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶))) |
115 | 113, 73, 93, 114 | mp3an2i 1337 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶))) |
116 | | pythagtriplem3 12221 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1) |
117 | 116 | oveq2d 5869 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = (2 · 1)) |
118 | | 2t1e2 9031 |
. . . . . 6
⊢ (2
· 1) = 2 |
119 | 117, 118 | eqtrdi 2219 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = 2) |
120 | 115, 119 | eqtrd 2203 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = 2) |
121 | 112, 120 | breqtrd 4015 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ 2) |
122 | | dvdsprime 12076 |
. . . 4
⊢ ((2
∈ ℙ ∧ ((𝐶
− 𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1))) |
123 | 47, 108, 122 | sylancr 412 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1))) |
124 | 121, 123 | mpbid 146 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1)) |
125 | | orel1 720 |
. 2
⊢ (¬
((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 → ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1)) |
126 | 53, 124, 125 | sylc 62 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) |