ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem4 GIF version

Theorem pythagtriplem4 12270
Description: Lemma for pythagtrip 12285. Show that 𝐢 βˆ’ 𝐡 and 𝐢 + 𝐡 are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 1)

Proof of Theorem pythagtriplem4
StepHypRef Expression
1 simp3r 1026 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ Β¬ 2 βˆ₯ 𝐴)
2 nnz 9274 . . . . . . . . . . . . 13 (𝐢 ∈ β„• β†’ 𝐢 ∈ β„€)
3 nnz 9274 . . . . . . . . . . . . 13 (𝐡 ∈ β„• β†’ 𝐡 ∈ β„€)
4 zsubcl 9296 . . . . . . . . . . . . 13 ((𝐢 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ (𝐢 βˆ’ 𝐡) ∈ β„€)
52, 3, 4syl2anr 290 . . . . . . . . . . . 12 ((𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) β†’ (𝐢 βˆ’ 𝐡) ∈ β„€)
653adant1 1015 . . . . . . . . . . 11 ((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) β†’ (𝐢 βˆ’ 𝐡) ∈ β„€)
763ad2ant1 1018 . . . . . . . . . 10 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (𝐢 βˆ’ 𝐡) ∈ β„€)
8 simp13 1029 . . . . . . . . . . . 12 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ 𝐢 ∈ β„•)
9 simp12 1028 . . . . . . . . . . . 12 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ 𝐡 ∈ β„•)
108, 9nnaddcld 8969 . . . . . . . . . . 11 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (𝐢 + 𝐡) ∈ β„•)
1110nnzd 9376 . . . . . . . . . 10 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (𝐢 + 𝐡) ∈ β„€)
12 gcddvds 11966 . . . . . . . . . 10 (((𝐢 βˆ’ 𝐡) ∈ β„€ ∧ (𝐢 + 𝐡) ∈ β„€) β†’ (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (𝐢 βˆ’ 𝐡) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (𝐢 + 𝐡)))
137, 11, 12syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (𝐢 βˆ’ 𝐡) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (𝐢 + 𝐡)))
1413simprd 114 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (𝐢 + 𝐡))
15 breq1 4008 . . . . . . . . 9 (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2 β†’ (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (𝐢 + 𝐡) ↔ 2 βˆ₯ (𝐢 + 𝐡)))
1615biimpd 144 . . . . . . . 8 (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2 β†’ (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (𝐢 + 𝐡) β†’ 2 βˆ₯ (𝐢 + 𝐡)))
1714, 16mpan9 281 . . . . . . 7 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 2 βˆ₯ (𝐢 + 𝐡))
18 2z 9283 . . . . . . . 8 2 ∈ β„€
19 simpl13 1074 . . . . . . . . . 10 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 𝐢 ∈ β„•)
2019nnzd 9376 . . . . . . . . 9 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 𝐢 ∈ β„€)
21 simpl12 1073 . . . . . . . . . 10 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 𝐡 ∈ β„•)
2221nnzd 9376 . . . . . . . . 9 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 𝐡 ∈ β„€)
2320, 22zaddcld 9381 . . . . . . . 8 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (𝐢 + 𝐡) ∈ β„€)
2420, 22zsubcld 9382 . . . . . . . 8 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (𝐢 βˆ’ 𝐡) ∈ β„€)
25 dvdsmultr1 11840 . . . . . . . 8 ((2 ∈ β„€ ∧ (𝐢 + 𝐡) ∈ β„€ ∧ (𝐢 βˆ’ 𝐡) ∈ β„€) β†’ (2 βˆ₯ (𝐢 + 𝐡) β†’ 2 βˆ₯ ((𝐢 + 𝐡) Β· (𝐢 βˆ’ 𝐡))))
2618, 23, 24, 25mp3an2i 1342 . . . . . . 7 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (2 βˆ₯ (𝐢 + 𝐡) β†’ 2 βˆ₯ ((𝐢 + 𝐡) Β· (𝐢 βˆ’ 𝐡))))
2717, 26mpd 13 . . . . . 6 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 2 βˆ₯ ((𝐢 + 𝐡) Β· (𝐢 βˆ’ 𝐡)))
2819nncnd 8935 . . . . . . 7 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 𝐢 ∈ β„‚)
2921nncnd 8935 . . . . . . 7 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 𝐡 ∈ β„‚)
30 subsq 10629 . . . . . . 7 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢↑2) βˆ’ (𝐡↑2)) = ((𝐢 + 𝐡) Β· (𝐢 βˆ’ 𝐡)))
3128, 29, 30syl2anc 411 . . . . . 6 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ ((𝐢↑2) βˆ’ (𝐡↑2)) = ((𝐢 + 𝐡) Β· (𝐢 βˆ’ 𝐡)))
3227, 31breqtrrd 4033 . . . . 5 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 2 βˆ₯ ((𝐢↑2) βˆ’ (𝐡↑2)))
33 simpl2 1001 . . . . . . 7 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2))
3433oveq1d 5892 . . . . . 6 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (((𝐴↑2) + (𝐡↑2)) βˆ’ (𝐡↑2)) = ((𝐢↑2) βˆ’ (𝐡↑2)))
35 simpl11 1072 . . . . . . . . 9 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 𝐴 ∈ β„•)
3635nnsqcld 10677 . . . . . . . 8 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (𝐴↑2) ∈ β„•)
3736nncnd 8935 . . . . . . 7 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (𝐴↑2) ∈ β„‚)
3821nnsqcld 10677 . . . . . . . 8 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (𝐡↑2) ∈ β„•)
3938nncnd 8935 . . . . . . 7 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (𝐡↑2) ∈ β„‚)
4037, 39pncand 8271 . . . . . 6 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (((𝐴↑2) + (𝐡↑2)) βˆ’ (𝐡↑2)) = (𝐴↑2))
4134, 40eqtr3d 2212 . . . . 5 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ ((𝐢↑2) βˆ’ (𝐡↑2)) = (𝐴↑2))
4232, 41breqtrd 4031 . . . 4 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 2 βˆ₯ (𝐴↑2))
43 nnz 9274 . . . . . . . 8 (𝐴 ∈ β„• β†’ 𝐴 ∈ β„€)
44433ad2ant1 1018 . . . . . . 7 ((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) β†’ 𝐴 ∈ β„€)
45443ad2ant1 1018 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ 𝐴 ∈ β„€)
4645adantr 276 . . . . 5 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 𝐴 ∈ β„€)
47 2prm 12129 . . . . . 6 2 ∈ β„™
48 2nn 9082 . . . . . 6 2 ∈ β„•
49 prmdvdsexp 12150 . . . . . 6 ((2 ∈ β„™ ∧ 𝐴 ∈ β„€ ∧ 2 ∈ β„•) β†’ (2 βˆ₯ (𝐴↑2) ↔ 2 βˆ₯ 𝐴))
5047, 48, 49mp3an13 1328 . . . . 5 (𝐴 ∈ β„€ β†’ (2 βˆ₯ (𝐴↑2) ↔ 2 βˆ₯ 𝐴))
5146, 50syl 14 . . . 4 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ (2 βˆ₯ (𝐴↑2) ↔ 2 βˆ₯ 𝐴))
5242, 51mpbid 147 . . 3 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2) β†’ 2 βˆ₯ 𝐴)
531, 52mtand 665 . 2 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ Β¬ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2)
54 neg1z 9287 . . . . . . . 8 -1 ∈ β„€
55 gcdaddm 11987 . . . . . . . 8 ((-1 ∈ β„€ ∧ (𝐢 βˆ’ 𝐡) ∈ β„€ ∧ (𝐢 + 𝐡) ∈ β„€) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = ((𝐢 βˆ’ 𝐡) gcd ((𝐢 + 𝐡) + (-1 Β· (𝐢 βˆ’ 𝐡)))))
5654, 7, 11, 55mp3an2i 1342 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = ((𝐢 βˆ’ 𝐡) gcd ((𝐢 + 𝐡) + (-1 Β· (𝐢 βˆ’ 𝐡)))))
578nncnd 8935 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ 𝐢 ∈ β„‚)
589nncnd 8935 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ 𝐡 ∈ β„‚)
59 pnncan 8200 . . . . . . . . . . 11 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 + 𝐡) βˆ’ (𝐢 βˆ’ 𝐡)) = (𝐡 + 𝐡))
60593anidm23 1297 . . . . . . . . . 10 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 + 𝐡) βˆ’ (𝐢 βˆ’ 𝐡)) = (𝐡 + 𝐡))
61 subcl 8158 . . . . . . . . . . . . 13 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐢 βˆ’ 𝐡) ∈ β„‚)
6261mulm1d 8369 . . . . . . . . . . . 12 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (-1 Β· (𝐢 βˆ’ 𝐡)) = -(𝐢 βˆ’ 𝐡))
6362oveq2d 5893 . . . . . . . . . . 11 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 + 𝐡) + (-1 Β· (𝐢 βˆ’ 𝐡))) = ((𝐢 + 𝐡) + -(𝐢 βˆ’ 𝐡)))
64 addcl 7938 . . . . . . . . . . . 12 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐢 + 𝐡) ∈ β„‚)
6564, 61negsubd 8276 . . . . . . . . . . 11 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 + 𝐡) + -(𝐢 βˆ’ 𝐡)) = ((𝐢 + 𝐡) βˆ’ (𝐢 βˆ’ 𝐡)))
6663, 65eqtrd 2210 . . . . . . . . . 10 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 + 𝐡) + (-1 Β· (𝐢 βˆ’ 𝐡))) = ((𝐢 + 𝐡) βˆ’ (𝐢 βˆ’ 𝐡)))
67 2times 9049 . . . . . . . . . . 11 (𝐡 ∈ β„‚ β†’ (2 Β· 𝐡) = (𝐡 + 𝐡))
6867adantl 277 . . . . . . . . . 10 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (2 Β· 𝐡) = (𝐡 + 𝐡))
6960, 66, 683eqtr4d 2220 . . . . . . . . 9 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 + 𝐡) + (-1 Β· (𝐢 βˆ’ 𝐡))) = (2 Β· 𝐡))
7069oveq2d 5893 . . . . . . . 8 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 βˆ’ 𝐡) gcd ((𝐢 + 𝐡) + (-1 Β· (𝐢 βˆ’ 𝐡)))) = ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐡)))
7157, 58, 70syl2anc 411 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd ((𝐢 + 𝐡) + (-1 Β· (𝐢 βˆ’ 𝐡)))) = ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐡)))
7256, 71eqtrd 2210 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐡)))
739nnzd 9376 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ 𝐡 ∈ β„€)
74 zmulcl 9308 . . . . . . . . 9 ((2 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ (2 Β· 𝐡) ∈ β„€)
7518, 73, 74sylancr 414 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (2 Β· 𝐡) ∈ β„€)
76 gcddvds 11966 . . . . . . . 8 (((𝐢 βˆ’ 𝐡) ∈ β„€ ∧ (2 Β· 𝐡) ∈ β„€) β†’ (((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐡)) βˆ₯ (𝐢 βˆ’ 𝐡) ∧ ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐡)) βˆ₯ (2 Β· 𝐡)))
777, 75, 76syl2anc 411 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐡)) βˆ₯ (𝐢 βˆ’ 𝐡) ∧ ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐡)) βˆ₯ (2 Β· 𝐡)))
7877simprd 114 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐡)) βˆ₯ (2 Β· 𝐡))
7972, 78eqbrtrd 4027 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (2 Β· 𝐡))
80 1z 9281 . . . . . . . 8 1 ∈ β„€
81 gcdaddm 11987 . . . . . . . 8 ((1 ∈ β„€ ∧ (𝐢 βˆ’ 𝐡) ∈ β„€ ∧ (𝐢 + 𝐡) ∈ β„€) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = ((𝐢 βˆ’ 𝐡) gcd ((𝐢 + 𝐡) + (1 Β· (𝐢 βˆ’ 𝐡)))))
8280, 7, 11, 81mp3an2i 1342 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = ((𝐢 βˆ’ 𝐡) gcd ((𝐢 + 𝐡) + (1 Β· (𝐢 βˆ’ 𝐡)))))
83 ppncan 8201 . . . . . . . . . . 11 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐢 + 𝐡) + (𝐢 βˆ’ 𝐡)) = (𝐢 + 𝐢))
84833anidm13 1296 . . . . . . . . . 10 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 + 𝐡) + (𝐢 βˆ’ 𝐡)) = (𝐢 + 𝐢))
8561mulid2d 7978 . . . . . . . . . . 11 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (1 Β· (𝐢 βˆ’ 𝐡)) = (𝐢 βˆ’ 𝐡))
8685oveq2d 5893 . . . . . . . . . 10 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 + 𝐡) + (1 Β· (𝐢 βˆ’ 𝐡))) = ((𝐢 + 𝐡) + (𝐢 βˆ’ 𝐡)))
87 2times 9049 . . . . . . . . . . 11 (𝐢 ∈ β„‚ β†’ (2 Β· 𝐢) = (𝐢 + 𝐢))
8887adantr 276 . . . . . . . . . 10 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (2 Β· 𝐢) = (𝐢 + 𝐢))
8984, 86, 883eqtr4d 2220 . . . . . . . . 9 ((𝐢 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐢 + 𝐡) + (1 Β· (𝐢 βˆ’ 𝐡))) = (2 Β· 𝐢))
9057, 58, 89syl2anc 411 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 + 𝐡) + (1 Β· (𝐢 βˆ’ 𝐡))) = (2 Β· 𝐢))
9190oveq2d 5893 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd ((𝐢 + 𝐡) + (1 Β· (𝐢 βˆ’ 𝐡)))) = ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐢)))
9282, 91eqtrd 2210 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐢)))
938nnzd 9376 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ 𝐢 ∈ β„€)
94 zmulcl 9308 . . . . . . . . 9 ((2 ∈ β„€ ∧ 𝐢 ∈ β„€) β†’ (2 Β· 𝐢) ∈ β„€)
9518, 93, 94sylancr 414 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (2 Β· 𝐢) ∈ β„€)
96 gcddvds 11966 . . . . . . . 8 (((𝐢 βˆ’ 𝐡) ∈ β„€ ∧ (2 Β· 𝐢) ∈ β„€) β†’ (((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐢)) βˆ₯ (𝐢 βˆ’ 𝐡) ∧ ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐢)) βˆ₯ (2 Β· 𝐢)))
977, 95, 96syl2anc 411 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐢)) βˆ₯ (𝐢 βˆ’ 𝐡) ∧ ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐢)) βˆ₯ (2 Β· 𝐢)))
9897simprd 114 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (2 Β· 𝐢)) βˆ₯ (2 Β· 𝐢))
9992, 98eqbrtrd 4027 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (2 Β· 𝐢))
100 nnaddcl 8941 . . . . . . . . . . . . . 14 ((𝐢 ∈ β„• ∧ 𝐡 ∈ β„•) β†’ (𝐢 + 𝐡) ∈ β„•)
101100nnne0d 8966 . . . . . . . . . . . . 13 ((𝐢 ∈ β„• ∧ 𝐡 ∈ β„•) β†’ (𝐢 + 𝐡) β‰  0)
102101ancoms 268 . . . . . . . . . . . 12 ((𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) β†’ (𝐢 + 𝐡) β‰  0)
1031023adant1 1015 . . . . . . . . . . 11 ((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) β†’ (𝐢 + 𝐡) β‰  0)
1041033ad2ant1 1018 . . . . . . . . . 10 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (𝐢 + 𝐡) β‰  0)
105104neneqd 2368 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ Β¬ (𝐢 + 𝐡) = 0)
106105intnand 931 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ Β¬ ((𝐢 βˆ’ 𝐡) = 0 ∧ (𝐢 + 𝐡) = 0))
107 gcdn0cl 11965 . . . . . . . 8 ((((𝐢 βˆ’ 𝐡) ∈ β„€ ∧ (𝐢 + 𝐡) ∈ β„€) ∧ Β¬ ((𝐢 βˆ’ 𝐡) = 0 ∧ (𝐢 + 𝐡) = 0)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) ∈ β„•)
1087, 11, 106, 107syl21anc 1237 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) ∈ β„•)
109108nnzd 9376 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) ∈ β„€)
110 dvdsgcd 12015 . . . . . 6 ((((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) ∈ β„€ ∧ (2 Β· 𝐡) ∈ β„€ ∧ (2 Β· 𝐢) ∈ β„€) β†’ ((((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (2 Β· 𝐡) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (2 Β· 𝐢)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ ((2 Β· 𝐡) gcd (2 Β· 𝐢))))
111109, 75, 95, 110syl3anc 1238 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (2 Β· 𝐡) ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ (2 Β· 𝐢)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ ((2 Β· 𝐡) gcd (2 Β· 𝐢))))
11279, 99, 111mp2and 433 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ ((2 Β· 𝐡) gcd (2 Β· 𝐢)))
113 2nn0 9195 . . . . . 6 2 ∈ β„•0
114 mulgcd 12019 . . . . . 6 ((2 ∈ β„•0 ∧ 𝐡 ∈ β„€ ∧ 𝐢 ∈ β„€) β†’ ((2 Β· 𝐡) gcd (2 Β· 𝐢)) = (2 Β· (𝐡 gcd 𝐢)))
115113, 73, 93, 114mp3an2i 1342 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((2 Β· 𝐡) gcd (2 Β· 𝐢)) = (2 Β· (𝐡 gcd 𝐢)))
116 pythagtriplem3 12269 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (𝐡 gcd 𝐢) = 1)
117116oveq2d 5893 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (2 Β· (𝐡 gcd 𝐢)) = (2 Β· 1))
118 2t1e2 9074 . . . . . 6 (2 Β· 1) = 2
119117, 118eqtrdi 2226 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (2 Β· (𝐡 gcd 𝐢)) = 2)
120115, 119eqtrd 2210 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((2 Β· 𝐡) gcd (2 Β· 𝐢)) = 2)
121112, 120breqtrd 4031 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ 2)
122 dvdsprime 12124 . . . 4 ((2 ∈ β„™ ∧ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) ∈ β„•) β†’ (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ 2 ↔ (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2 ∨ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 1)))
12347, 108, 122sylancr 414 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) βˆ₯ 2 ↔ (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2 ∨ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 1)))
124121, 123mpbid 147 . 2 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ (((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2 ∨ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 1))
125 orel1 725 . 2 (Β¬ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2 β†’ ((((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 2 ∨ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 1) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 1))
12653, 124, 125sylc 62 1 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝐢 ∈ β„•) ∧ ((𝐴↑2) + (𝐡↑2)) = (𝐢↑2) ∧ ((𝐴 gcd 𝐡) = 1 ∧ Β¬ 2 βˆ₯ 𝐴)) β†’ ((𝐢 βˆ’ 𝐡) gcd (𝐢 + 𝐡)) = 1)
Colors of variables: wff set class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∨ wo 708   ∧ w3a 978   = wceq 1353   ∈ wcel 2148   β‰  wne 2347   class class class wbr 4005  (class class class)co 5877  β„‚cc 7811  0cc0 7813  1c1 7814   + caddc 7816   Β· cmul 7818   βˆ’ cmin 8130  -cneg 8131  β„•cn 8921  2c2 8972  β„•0cn0 9178  β„€cz 9255  β†‘cexp 10521   βˆ₯ cdvds 11796   gcd cgcd 11945  β„™cprime 12109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-prm 12110
This theorem is referenced by:  pythagtriplem6  12272  pythagtriplem7  12273
  Copyright terms: Public domain W3C validator