Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3com23 | GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1192 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
4 | 3 | 3imp 1183 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3coml 1200 syld3an2 1275 3anidm13 1286 eqreu 2918 f1ofveu 5830 acexmid 5841 dfsmo2 6255 f1oeng 6723 ctssdc 7078 ltexprlemdisj 7547 ltexprlemfu 7552 recexprlemss1u 7577 mul32 8028 add32 8057 cnegexlem2 8074 subsub23 8103 subadd23 8110 addsub12 8111 subsub 8128 subsub3 8130 sub32 8132 suble 8338 lesub 8339 ltsub23 8340 ltsub13 8341 ltleadd 8344 div32ap 8588 div13ap 8589 div12ap 8590 divdiv32ap 8616 cju 8856 icc0r 9862 fzen 9978 elfz1b 10025 ioo0 10195 ico0 10197 ioc0 10198 expgt0 10488 expge0 10491 expge1 10492 shftval2 10768 abs3dif 11047 divalgb 11862 nnwodc 11969 ctinf 12363 restin 12816 cnpnei 12859 cnptoprest 12879 psmetsym 12969 xmetsym 13008 |
Copyright terms: Public domain | W3C validator |