| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1205 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | 3imp 1196 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3coml 1213 syld3an2 1297 3anidm13 1309 eqreu 2969 f1ofveu 5945 acexmid 5956 dfsmo2 6386 f1oeng 6861 ctssdc 7230 ltexprlemdisj 7739 ltexprlemfu 7744 recexprlemss1u 7769 mul32 8222 add32 8251 cnegexlem2 8268 subsub23 8297 subadd23 8304 addsub12 8305 subsub 8322 subsub3 8324 sub32 8326 suble 8533 lesub 8534 ltsub23 8535 ltsub13 8536 ltleadd 8539 div32ap 8785 div13ap 8786 div12ap 8787 divdiv32ap 8813 cju 9054 icc0r 10068 fzen 10185 elfz1b 10232 ioo0 10424 ico0 10426 ioc0 10427 expgt0 10739 expge0 10742 expge1 10743 shftval2 11212 abs3dif 11491 divalgb 12311 nnwodc 12432 ctinf 12876 grpinvcnv 13475 mulgaddcom 13557 mulgneg2 13567 srgrmhm 13831 ringcom 13868 mulgass2 13895 opprrng 13914 opprring 13916 unitmulcl 13950 islmodd 14130 lmodcom 14170 rmodislmod 14188 restin 14723 cnpnei 14766 cnptoprest 14786 psmetsym 14876 xmetsym 14915 |
| Copyright terms: Public domain | W3C validator |