| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3coml 1212 syld3an2 1296 3anidm13 1307 eqreu 2956 f1ofveu 5913 acexmid 5924 dfsmo2 6354 f1oeng 6825 ctssdc 7188 ltexprlemdisj 7692 ltexprlemfu 7697 recexprlemss1u 7722 mul32 8175 add32 8204 cnegexlem2 8221 subsub23 8250 subadd23 8257 addsub12 8258 subsub 8275 subsub3 8277 sub32 8279 suble 8486 lesub 8487 ltsub23 8488 ltsub13 8489 ltleadd 8492 div32ap 8738 div13ap 8739 div12ap 8740 divdiv32ap 8766 cju 9007 icc0r 10020 fzen 10137 elfz1b 10184 ioo0 10368 ico0 10370 ioc0 10371 expgt0 10683 expge0 10686 expge1 10687 shftval2 11010 abs3dif 11289 divalgb 12109 nnwodc 12230 ctinf 12674 grpinvcnv 13272 mulgaddcom 13354 mulgneg2 13364 srgrmhm 13628 ringcom 13665 mulgass2 13692 opprrng 13711 opprring 13713 unitmulcl 13747 islmodd 13927 lmodcom 13967 rmodislmod 13985 restin 14520 cnpnei 14563 cnptoprest 14583 psmetsym 14673 xmetsym 14712 |
| Copyright terms: Public domain | W3C validator |