| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3coml 1212 syld3an2 1296 3anidm13 1307 eqreu 2956 f1ofveu 5913 acexmid 5924 dfsmo2 6354 f1oeng 6825 ctssdc 7188 ltexprlemdisj 7690 ltexprlemfu 7695 recexprlemss1u 7720 mul32 8173 add32 8202 cnegexlem2 8219 subsub23 8248 subadd23 8255 addsub12 8256 subsub 8273 subsub3 8275 sub32 8277 suble 8484 lesub 8485 ltsub23 8486 ltsub13 8487 ltleadd 8490 div32ap 8736 div13ap 8737 div12ap 8738 divdiv32ap 8764 cju 9005 icc0r 10018 fzen 10135 elfz1b 10182 ioo0 10366 ico0 10368 ioc0 10369 expgt0 10681 expge0 10684 expge1 10685 shftval2 11008 abs3dif 11287 divalgb 12107 nnwodc 12228 ctinf 12672 grpinvcnv 13270 mulgaddcom 13352 mulgneg2 13362 srgrmhm 13626 ringcom 13663 mulgass2 13690 opprrng 13709 opprring 13711 unitmulcl 13745 islmodd 13925 lmodcom 13965 rmodislmod 13983 restin 14496 cnpnei 14539 cnptoprest 14559 psmetsym 14649 xmetsym 14688 |
| Copyright terms: Public domain | W3C validator |