| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1226 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | 3imp 1217 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3coml 1234 syld3an2 1318 3anidm13 1330 eqreu 2995 f1ofveu 5988 acexmid 5999 dfsmo2 6431 f1oeng 6906 ctssdc 7276 ltexprlemdisj 7789 ltexprlemfu 7794 recexprlemss1u 7819 mul32 8272 add32 8301 cnegexlem2 8318 subsub23 8347 subadd23 8354 addsub12 8355 subsub 8372 subsub3 8374 sub32 8376 suble 8583 lesub 8584 ltsub23 8585 ltsub13 8586 ltleadd 8589 div32ap 8835 div13ap 8836 div12ap 8837 divdiv32ap 8863 cju 9104 icc0r 10118 fzen 10235 elfz1b 10282 ioo0 10474 ico0 10476 ioc0 10477 expgt0 10789 expge0 10792 expge1 10793 shftval2 11332 abs3dif 11611 divalgb 12431 nnwodc 12552 ctinf 12996 grpinvcnv 13596 mulgaddcom 13678 mulgneg2 13688 srgrmhm 13952 ringcom 13989 mulgass2 14016 opprrng 14035 opprring 14037 unitmulcl 14071 islmodd 14251 lmodcom 14291 rmodislmod 14309 restin 14844 cnpnei 14887 cnptoprest 14907 psmetsym 14997 xmetsym 15036 |
| Copyright terms: Public domain | W3C validator |