| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3coml 1212 syld3an2 1296 3anidm13 1308 eqreu 2964 f1ofveu 5931 acexmid 5942 dfsmo2 6372 f1oeng 6847 ctssdc 7214 ltexprlemdisj 7718 ltexprlemfu 7723 recexprlemss1u 7748 mul32 8201 add32 8230 cnegexlem2 8247 subsub23 8276 subadd23 8283 addsub12 8284 subsub 8301 subsub3 8303 sub32 8305 suble 8512 lesub 8513 ltsub23 8514 ltsub13 8515 ltleadd 8518 div32ap 8764 div13ap 8765 div12ap 8766 divdiv32ap 8792 cju 9033 icc0r 10047 fzen 10164 elfz1b 10211 ioo0 10400 ico0 10402 ioc0 10403 expgt0 10715 expge0 10718 expge1 10719 shftval2 11108 abs3dif 11387 divalgb 12207 nnwodc 12328 ctinf 12772 grpinvcnv 13371 mulgaddcom 13453 mulgneg2 13463 srgrmhm 13727 ringcom 13764 mulgass2 13791 opprrng 13810 opprring 13812 unitmulcl 13846 islmodd 14026 lmodcom 14066 rmodislmod 14084 restin 14619 cnpnei 14662 cnptoprest 14682 psmetsym 14772 xmetsym 14811 |
| Copyright terms: Public domain | W3C validator |