![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3com23 | GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1204 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
4 | 3 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3coml 1212 syld3an2 1296 3anidm13 1307 eqreu 2953 f1ofveu 5907 acexmid 5918 dfsmo2 6342 f1oeng 6813 ctssdc 7174 ltexprlemdisj 7668 ltexprlemfu 7673 recexprlemss1u 7698 mul32 8151 add32 8180 cnegexlem2 8197 subsub23 8226 subadd23 8233 addsub12 8234 subsub 8251 subsub3 8253 sub32 8255 suble 8461 lesub 8462 ltsub23 8463 ltsub13 8464 ltleadd 8467 div32ap 8713 div13ap 8714 div12ap 8715 divdiv32ap 8741 cju 8982 icc0r 9995 fzen 10112 elfz1b 10159 ioo0 10331 ico0 10333 ioc0 10334 expgt0 10646 expge0 10649 expge1 10650 shftval2 10973 abs3dif 11252 divalgb 12069 nnwodc 12176 ctinf 12590 grpinvcnv 13143 mulgaddcom 13219 mulgneg2 13229 srgrmhm 13493 ringcom 13530 mulgass2 13557 opprrng 13576 opprring 13578 unitmulcl 13612 islmodd 13792 lmodcom 13832 rmodislmod 13850 restin 14355 cnpnei 14398 cnptoprest 14418 psmetsym 14508 xmetsym 14547 |
Copyright terms: Public domain | W3C validator |