ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm13 Unicode version

Theorem 3anidm13 1291
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1  |-  ( (
ph  /\  ps  /\  ph )  ->  ch )
Assertion
Ref Expression
3anidm13  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3  |-  ( (
ph  /\  ps  /\  ph )  ->  ch )
213com23 1204 . 2  |-  ( (
ph  /\  ph  /\  ps )  ->  ch )
323anidm12 1290 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  ltnsym  8005  npncan2  8146  ltsubpos  8373  leaddle0  8396  subge02  8397  halfaddsub  9112  avglt1  9116  pythagtriplem4  12222  pythagtriplem14  12231  rplogbid1  13659
  Copyright terms: Public domain W3C validator