| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anidm13 | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm13.1 |
|
| Ref | Expression |
|---|---|
| 3anidm13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm13.1 |
. . 3
| |
| 2 | 1 | 3com23 1212 |
. 2
|
| 3 | 2 | 3anidm12 1308 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ltnsym 8193 npncan2 8334 ltsubpos 8562 leaddle0 8585 subge02 8586 halfaddsub 9306 avglt1 9311 pythagtriplem4 12706 pythagtriplem14 12715 rplogbid1 15534 |
| Copyright terms: Public domain | W3C validator |