| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anidm13 | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm13.1 |
|
| Ref | Expression |
|---|---|
| 3anidm13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm13.1 |
. . 3
| |
| 2 | 1 | 3com23 1211 |
. 2
|
| 3 | 2 | 3anidm12 1306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ltnsym 8129 npncan2 8270 ltsubpos 8498 leaddle0 8521 subge02 8522 halfaddsub 9242 avglt1 9247 pythagtriplem4 12462 pythagtriplem14 12471 rplogbid1 15267 |
| Copyright terms: Public domain | W3C validator |