Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anidm13 | Unicode version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm13.1 |
Ref | Expression |
---|---|
3anidm13 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm13.1 | . . 3 | |
2 | 1 | 3com23 1199 | . 2 |
3 | 2 | 3anidm12 1285 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: ltnsym 7980 npncan2 8121 ltsubpos 8348 leaddle0 8371 subge02 8372 halfaddsub 9087 avglt1 9091 pythagtriplem4 12196 pythagtriplem14 12205 rplogbid1 13465 |
Copyright terms: Public domain | W3C validator |