ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfaddsub GIF version

Theorem halfaddsub 9184
Description: Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
halfaddsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))

Proof of Theorem halfaddsub
StepHypRef Expression
1 ppncan 8230 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
213anidm13 1307 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
3 2times 9078 . . . . . 6 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
43adantr 276 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐴) = (𝐴 + 𝐴))
52, 4eqtr4d 2225 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
65oveq1d 5912 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = ((2 · 𝐴) / 2))
7 addcl 7967 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
8 subcl 8187 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
9 2cn 9021 . . . . . 6 2 ∈ ℂ
10 2ap0 9043 . . . . . 6 2 # 0
119, 10pm3.2i 272 . . . . 5 (2 ∈ ℂ ∧ 2 # 0)
12 divdirap 8685 . . . . 5 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))
1311, 12mp3an3 1337 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))
147, 8, 13syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))
15 divcanap3 8686 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((2 · 𝐴) / 2) = 𝐴)
169, 10, 15mp3an23 1340 . . . 4 (𝐴 ∈ ℂ → ((2 · 𝐴) / 2) = 𝐴)
1716adantr 276 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐴) / 2) = 𝐴)
186, 14, 173eqtr3d 2230 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴)
19 pnncan 8229 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
20193anidm23 1308 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
21 2times 9078 . . . . . 6 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
2221adantl 277 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
2320, 22eqtr4d 2225 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (2 · 𝐵))
2423oveq1d 5912 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = ((2 · 𝐵) / 2))
25 divsubdirap 8696 . . . . 5 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))
2611, 25mp3an3 1337 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))
277, 8, 26syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))
28 divcanap3 8686 . . . . 5 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((2 · 𝐵) / 2) = 𝐵)
299, 10, 28mp3an23 1340 . . . 4 (𝐵 ∈ ℂ → ((2 · 𝐵) / 2) = 𝐵)
3029adantl 277 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐵) / 2) = 𝐵)
3124, 27, 303eqtr3d 2230 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵)
3218, 31jca 306 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   class class class wbr 4018  (class class class)co 5897  cc 7840  0cc0 7842   + caddc 7845   · cmul 7847  cmin 8159   # cap 8569   / cdiv 8660  2c2 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-2 9009
This theorem is referenced by:  addsin  11785  subsin  11786  addcos  11789  subcos  11790  ioo2bl  14520
  Copyright terms: Public domain W3C validator