ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3rd GIF version

Theorem 3bitr3rd 218
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr3d.1 (𝜑 → (𝜓𝜒))
3bitr3d.2 (𝜑 → (𝜓𝜃))
3bitr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3bitr3rd (𝜑 → (𝜏𝜃))

Proof of Theorem 3bitr3rd
StepHypRef Expression
1 3bitr3d.3 . 2 (𝜑 → (𝜒𝜏))
2 3bitr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitr3d.2 . . 3 (𝜑 → (𝜓𝜃))
42, 3bitr3d 189 . 2 (𝜑 → (𝜒𝜃))
51, 4bitr3d 189 1 (𝜑 → (𝜏𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  funconstss  5603  eqneg  8628  minclpr  11178  evenennn  12326  rpcxple2  13478  rpcxplt2  13479  lgslem1  13541
  Copyright terms: Public domain W3C validator