Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr3rd | GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitr3d 189 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
5 | 1, 4 | bitr3d 189 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: funconstss 5614 eqneg 8649 minclpr 11200 evenennn 12348 rpcxple2 13632 rpcxplt2 13633 lgslem1 13695 |
Copyright terms: Public domain | W3C validator |