![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > evenennn | GIF version |
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
Ref | Expression |
---|---|
evenennn | ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 8988 | . . 3 ⊢ ℕ ∈ V | |
2 | 1 | rabex 4173 | . 2 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∈ V |
3 | breq2 4033 | . . . 4 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
4 | 3 | elrab 2916 | . . 3 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ 2 ∥ 𝑥)) |
5 | nnehalf 12045 | . . 3 ⊢ ((𝑥 ∈ ℕ ∧ 2 ∥ 𝑥) → (𝑥 / 2) ∈ ℕ) | |
6 | 4, 5 | sylbi 121 | . 2 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → (𝑥 / 2) ∈ ℕ) |
7 | 2nn 9143 | . . . . 5 ⊢ 2 ∈ ℕ | |
8 | 7 | a1i 9 | . . . 4 ⊢ (𝑦 ∈ ℕ → 2 ∈ ℕ) |
9 | id 19 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ) | |
10 | 8, 9 | nnmulcld 9031 | . . 3 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ) |
11 | 2z 9345 | . . . 4 ⊢ 2 ∈ ℤ | |
12 | nnz 9336 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℤ) | |
13 | dvdsmul1 11956 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 2 ∥ (2 · 𝑦)) | |
14 | 11, 12, 13 | sylancr 414 | . . 3 ⊢ (𝑦 ∈ ℕ → 2 ∥ (2 · 𝑦)) |
15 | breq2 4033 | . . . 4 ⊢ (𝑧 = (2 · 𝑦) → (2 ∥ 𝑧 ↔ 2 ∥ (2 · 𝑦))) | |
16 | 15 | elrab 2916 | . . 3 ⊢ ((2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ ((2 · 𝑦) ∈ ℕ ∧ 2 ∥ (2 · 𝑦))) |
17 | 10, 14, 16 | sylanbrc 417 | . 2 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
18 | elrabi 2913 | . . . . . 6 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → 𝑥 ∈ ℕ) | |
19 | 18 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ) |
20 | 19 | nncnd 8996 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
21 | simpr 110 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ) | |
22 | 21 | nncnd 8996 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
23 | 2cnd 9055 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ) | |
24 | 2ap0 9075 | . . . . 5 ⊢ 2 # 0 | |
25 | 24 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0) |
26 | 20, 22, 23, 25 | divmulap3d 8844 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑥 = (𝑦 · 2))) |
27 | eqcom 2195 | . . . 4 ⊢ ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2)) | |
28 | 27 | a1i 9 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2))) |
29 | 22, 23 | mulcomd 8041 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) = (2 · 𝑦)) |
30 | 29 | eqeq2d 2205 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 · 2) ↔ 𝑥 = (2 · 𝑦))) |
31 | 26, 28, 30 | 3bitr3rd 219 | . 2 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (2 · 𝑦) ↔ 𝑦 = (𝑥 / 2))) |
32 | 2, 1, 6, 17, 31 | en3i 6825 | 1 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {crab 2476 class class class wbr 4029 (class class class)co 5918 ≈ cen 6792 0cc0 7872 · cmul 7877 # cap 8600 / cdiv 8691 ℕcn 8982 2c2 9033 ℤcz 9317 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-en 6795 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-dvds 11931 |
This theorem is referenced by: unennn 12554 |
Copyright terms: Public domain | W3C validator |