| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > evenennn | GIF version | ||
| Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
| Ref | Expression |
|---|---|
| evenennn | ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 9112 | . . 3 ⊢ ℕ ∈ V | |
| 2 | 1 | rabex 4227 | . 2 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∈ V |
| 3 | breq2 4086 | . . . 4 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
| 4 | 3 | elrab 2959 | . . 3 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ 2 ∥ 𝑥)) |
| 5 | nnehalf 12410 | . . 3 ⊢ ((𝑥 ∈ ℕ ∧ 2 ∥ 𝑥) → (𝑥 / 2) ∈ ℕ) | |
| 6 | 4, 5 | sylbi 121 | . 2 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → (𝑥 / 2) ∈ ℕ) |
| 7 | 2nn 9268 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 8 | 7 | a1i 9 | . . . 4 ⊢ (𝑦 ∈ ℕ → 2 ∈ ℕ) |
| 9 | id 19 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ) | |
| 10 | 8, 9 | nnmulcld 9155 | . . 3 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ) |
| 11 | 2z 9470 | . . . 4 ⊢ 2 ∈ ℤ | |
| 12 | nnz 9461 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℤ) | |
| 13 | dvdsmul1 12319 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 2 ∥ (2 · 𝑦)) | |
| 14 | 11, 12, 13 | sylancr 414 | . . 3 ⊢ (𝑦 ∈ ℕ → 2 ∥ (2 · 𝑦)) |
| 15 | breq2 4086 | . . . 4 ⊢ (𝑧 = (2 · 𝑦) → (2 ∥ 𝑧 ↔ 2 ∥ (2 · 𝑦))) | |
| 16 | 15 | elrab 2959 | . . 3 ⊢ ((2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ ((2 · 𝑦) ∈ ℕ ∧ 2 ∥ (2 · 𝑦))) |
| 17 | 10, 14, 16 | sylanbrc 417 | . 2 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
| 18 | elrabi 2956 | . . . . . 6 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → 𝑥 ∈ ℕ) | |
| 19 | 18 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ) |
| 20 | 19 | nncnd 9120 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
| 21 | simpr 110 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ) | |
| 22 | 21 | nncnd 9120 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
| 23 | 2cnd 9179 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ) | |
| 24 | 2ap0 9199 | . . . . 5 ⊢ 2 # 0 | |
| 25 | 24 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0) |
| 26 | 20, 22, 23, 25 | divmulap3d 8968 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑥 = (𝑦 · 2))) |
| 27 | eqcom 2231 | . . . 4 ⊢ ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2)) | |
| 28 | 27 | a1i 9 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2))) |
| 29 | 22, 23 | mulcomd 8164 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) = (2 · 𝑦)) |
| 30 | 29 | eqeq2d 2241 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 · 2) ↔ 𝑥 = (2 · 𝑦))) |
| 31 | 26, 28, 30 | 3bitr3rd 219 | . 2 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (2 · 𝑦) ↔ 𝑦 = (𝑥 / 2))) |
| 32 | 2, 1, 6, 17, 31 | en3i 6920 | 1 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4082 (class class class)co 6000 ≈ cen 6883 0cc0 7995 · cmul 8000 # cap 8724 / cdiv 8815 ℕcn 9106 2c2 9157 ℤcz 9442 ∥ cdvds 12293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-en 6886 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-dvds 12294 |
| This theorem is referenced by: unennn 12963 |
| Copyright terms: Public domain | W3C validator |