| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > evenennn | GIF version | ||
| Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
| Ref | Expression |
|---|---|
| evenennn | ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 9041 | . . 3 ⊢ ℕ ∈ V | |
| 2 | 1 | rabex 4187 | . 2 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∈ V |
| 3 | breq2 4047 | . . . 4 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
| 4 | 3 | elrab 2928 | . . 3 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ 2 ∥ 𝑥)) |
| 5 | nnehalf 12157 | . . 3 ⊢ ((𝑥 ∈ ℕ ∧ 2 ∥ 𝑥) → (𝑥 / 2) ∈ ℕ) | |
| 6 | 4, 5 | sylbi 121 | . 2 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → (𝑥 / 2) ∈ ℕ) |
| 7 | 2nn 9197 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 8 | 7 | a1i 9 | . . . 4 ⊢ (𝑦 ∈ ℕ → 2 ∈ ℕ) |
| 9 | id 19 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ) | |
| 10 | 8, 9 | nnmulcld 9084 | . . 3 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ) |
| 11 | 2z 9399 | . . . 4 ⊢ 2 ∈ ℤ | |
| 12 | nnz 9390 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℤ) | |
| 13 | dvdsmul1 12066 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 2 ∥ (2 · 𝑦)) | |
| 14 | 11, 12, 13 | sylancr 414 | . . 3 ⊢ (𝑦 ∈ ℕ → 2 ∥ (2 · 𝑦)) |
| 15 | breq2 4047 | . . . 4 ⊢ (𝑧 = (2 · 𝑦) → (2 ∥ 𝑧 ↔ 2 ∥ (2 · 𝑦))) | |
| 16 | 15 | elrab 2928 | . . 3 ⊢ ((2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ ((2 · 𝑦) ∈ ℕ ∧ 2 ∥ (2 · 𝑦))) |
| 17 | 10, 14, 16 | sylanbrc 417 | . 2 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
| 18 | elrabi 2925 | . . . . . 6 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → 𝑥 ∈ ℕ) | |
| 19 | 18 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ) |
| 20 | 19 | nncnd 9049 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
| 21 | simpr 110 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ) | |
| 22 | 21 | nncnd 9049 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
| 23 | 2cnd 9108 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ) | |
| 24 | 2ap0 9128 | . . . . 5 ⊢ 2 # 0 | |
| 25 | 24 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0) |
| 26 | 20, 22, 23, 25 | divmulap3d 8897 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑥 = (𝑦 · 2))) |
| 27 | eqcom 2206 | . . . 4 ⊢ ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2)) | |
| 28 | 27 | a1i 9 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2))) |
| 29 | 22, 23 | mulcomd 8093 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) = (2 · 𝑦)) |
| 30 | 29 | eqeq2d 2216 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 · 2) ↔ 𝑥 = (2 · 𝑦))) |
| 31 | 26, 28, 30 | 3bitr3rd 219 | . 2 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (2 · 𝑦) ↔ 𝑦 = (𝑥 / 2))) |
| 32 | 2, 1, 6, 17, 31 | en3i 6861 | 1 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {crab 2487 class class class wbr 4043 (class class class)co 5943 ≈ cen 6824 0cc0 7924 · cmul 7929 # cap 8653 / cdiv 8744 ℕcn 9035 2c2 9086 ℤcz 9371 ∥ cdvds 12040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-en 6827 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-dvds 12041 |
| This theorem is referenced by: unennn 12710 |
| Copyright terms: Public domain | W3C validator |