Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > evenennn | GIF version |
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
Ref | Expression |
---|---|
evenennn | ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 8863 | . . 3 ⊢ ℕ ∈ V | |
2 | 1 | rabex 4126 | . 2 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∈ V |
3 | breq2 3986 | . . . 4 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
4 | 3 | elrab 2882 | . . 3 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ 2 ∥ 𝑥)) |
5 | nnehalf 11841 | . . 3 ⊢ ((𝑥 ∈ ℕ ∧ 2 ∥ 𝑥) → (𝑥 / 2) ∈ ℕ) | |
6 | 4, 5 | sylbi 120 | . 2 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → (𝑥 / 2) ∈ ℕ) |
7 | 2nn 9018 | . . . . 5 ⊢ 2 ∈ ℕ | |
8 | 7 | a1i 9 | . . . 4 ⊢ (𝑦 ∈ ℕ → 2 ∈ ℕ) |
9 | id 19 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ) | |
10 | 8, 9 | nnmulcld 8906 | . . 3 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ) |
11 | 2z 9219 | . . . 4 ⊢ 2 ∈ ℤ | |
12 | nnz 9210 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℤ) | |
13 | dvdsmul1 11753 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 2 ∥ (2 · 𝑦)) | |
14 | 11, 12, 13 | sylancr 411 | . . 3 ⊢ (𝑦 ∈ ℕ → 2 ∥ (2 · 𝑦)) |
15 | breq2 3986 | . . . 4 ⊢ (𝑧 = (2 · 𝑦) → (2 ∥ 𝑧 ↔ 2 ∥ (2 · 𝑦))) | |
16 | 15 | elrab 2882 | . . 3 ⊢ ((2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ ((2 · 𝑦) ∈ ℕ ∧ 2 ∥ (2 · 𝑦))) |
17 | 10, 14, 16 | sylanbrc 414 | . 2 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
18 | elrabi 2879 | . . . . . 6 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → 𝑥 ∈ ℕ) | |
19 | 18 | adantr 274 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ) |
20 | 19 | nncnd 8871 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
21 | simpr 109 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ) | |
22 | 21 | nncnd 8871 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
23 | 2cnd 8930 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ) | |
24 | 2ap0 8950 | . . . . 5 ⊢ 2 # 0 | |
25 | 24 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0) |
26 | 20, 22, 23, 25 | divmulap3d 8721 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑥 = (𝑦 · 2))) |
27 | eqcom 2167 | . . . 4 ⊢ ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2)) | |
28 | 27 | a1i 9 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2))) |
29 | 22, 23 | mulcomd 7920 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) = (2 · 𝑦)) |
30 | 29 | eqeq2d 2177 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 · 2) ↔ 𝑥 = (2 · 𝑦))) |
31 | 26, 28, 30 | 3bitr3rd 218 | . 2 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (2 · 𝑦) ↔ 𝑦 = (𝑥 / 2))) |
32 | 2, 1, 6, 17, 31 | en3i 6737 | 1 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {crab 2448 class class class wbr 3982 (class class class)co 5842 ≈ cen 6704 0cc0 7753 · cmul 7758 # cap 8479 / cdiv 8568 ℕcn 8857 2c2 8908 ℤcz 9191 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-en 6707 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-dvds 11728 |
This theorem is referenced by: unennn 12330 |
Copyright terms: Public domain | W3C validator |