![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > evenennn | GIF version |
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
Ref | Expression |
---|---|
evenennn | ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 8630 | . . 3 ⊢ ℕ ∈ V | |
2 | 1 | rabex 4030 | . 2 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∈ V |
3 | breq2 3897 | . . . 4 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
4 | 3 | elrab 2807 | . . 3 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ 2 ∥ 𝑥)) |
5 | nnehalf 11443 | . . 3 ⊢ ((𝑥 ∈ ℕ ∧ 2 ∥ 𝑥) → (𝑥 / 2) ∈ ℕ) | |
6 | 4, 5 | sylbi 120 | . 2 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → (𝑥 / 2) ∈ ℕ) |
7 | 2nn 8779 | . . . . 5 ⊢ 2 ∈ ℕ | |
8 | 7 | a1i 9 | . . . 4 ⊢ (𝑦 ∈ ℕ → 2 ∈ ℕ) |
9 | id 19 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ) | |
10 | 8, 9 | nnmulcld 8673 | . . 3 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ) |
11 | 2z 8980 | . . . 4 ⊢ 2 ∈ ℤ | |
12 | nnz 8971 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℤ) | |
13 | dvdsmul1 11357 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 2 ∥ (2 · 𝑦)) | |
14 | 11, 12, 13 | sylancr 408 | . . 3 ⊢ (𝑦 ∈ ℕ → 2 ∥ (2 · 𝑦)) |
15 | breq2 3897 | . . . 4 ⊢ (𝑧 = (2 · 𝑦) → (2 ∥ 𝑧 ↔ 2 ∥ (2 · 𝑦))) | |
16 | 15 | elrab 2807 | . . 3 ⊢ ((2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ↔ ((2 · 𝑦) ∈ ℕ ∧ 2 ∥ (2 · 𝑦))) |
17 | 10, 14, 16 | sylanbrc 411 | . 2 ⊢ (𝑦 ∈ ℕ → (2 · 𝑦) ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
18 | elrabi 2804 | . . . . . 6 ⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} → 𝑥 ∈ ℕ) | |
19 | 18 | adantr 272 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ) |
20 | 19 | nncnd 8638 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
21 | simpr 109 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ) | |
22 | 21 | nncnd 8638 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
23 | 2cnd 8697 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ) | |
24 | 2ap0 8717 | . . . . 5 ⊢ 2 # 0 | |
25 | 24 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0) |
26 | 20, 22, 23, 25 | divmulap3d 8492 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑥 = (𝑦 · 2))) |
27 | eqcom 2115 | . . . 4 ⊢ ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2)) | |
28 | 27 | a1i 9 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 / 2) = 𝑦 ↔ 𝑦 = (𝑥 / 2))) |
29 | 22, 23 | mulcomd 7705 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) = (2 · 𝑦)) |
30 | 29 | eqeq2d 2124 | . . 3 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 · 2) ↔ 𝑥 = (2 · 𝑦))) |
31 | 26, 28, 30 | 3bitr3rd 218 | . 2 ⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = (2 · 𝑦) ↔ 𝑦 = (𝑥 / 2))) |
32 | 2, 1, 6, 17, 31 | en3i 6617 | 1 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1312 ∈ wcel 1461 {crab 2392 class class class wbr 3893 (class class class)co 5726 ≈ cen 6584 0cc0 7541 · cmul 7546 # cap 8255 / cdiv 8339 ℕcn 8624 2c2 8675 ℤcz 8952 ∥ cdvds 11335 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-mulrcl 7638 ax-addcom 7639 ax-mulcom 7640 ax-addass 7641 ax-mulass 7642 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-1rid 7646 ax-0id 7647 ax-rnegex 7648 ax-precex 7649 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 ax-pre-mulgt0 7656 ax-pre-mulext 7657 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-po 4176 df-iso 4177 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-en 6587 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-reap 8249 df-ap 8256 df-div 8340 df-inn 8625 df-2 8683 df-n0 8876 df-z 8953 df-dvds 11336 |
This theorem is referenced by: unennn 11749 |
Copyright terms: Public domain | W3C validator |