Proof of Theorem minclpr
Step | Hyp | Ref
| Expression |
1 | | renegcl 8159 |
. . . . 5
⊢ (𝐴 ∈ ℝ → -𝐴 ∈
ℝ) |
2 | | renegcl 8159 |
. . . . 5
⊢ (𝐵 ∈ ℝ → -𝐵 ∈
ℝ) |
3 | | maxcl 11152 |
. . . . 5
⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) →
sup({-𝐴, -𝐵}, ℝ, < ) ∈
ℝ) |
4 | 1, 2, 3 | syl2an 287 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
sup({-𝐴, -𝐵}, ℝ, < ) ∈
ℝ) |
5 | | elprg 3596 |
. . . 4
⊢
(sup({-𝐴, -𝐵}, ℝ, < ) ∈
ℝ → (sup({-𝐴,
-𝐵}, ℝ, < ) ∈
{-𝐴, -𝐵} ↔ (sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ∨ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵))) |
6 | 4, 5 | syl 14 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) ∈
{-𝐴, -𝐵} ↔ (sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ∨ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵))) |
7 | | maxclpr 11164 |
. . . 4
⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) ∈
{-𝐴, -𝐵} ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
8 | 1, 2, 7 | syl2an 287 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) ∈
{-𝐴, -𝐵} ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
9 | 4 | recnd 7927 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
sup({-𝐴, -𝐵}, ℝ, < ) ∈
ℂ) |
10 | 1 | adantr 274 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈
ℝ) |
11 | 10 | recnd 7927 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈
ℂ) |
12 | 9, 11 | neg11ad 8205 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐴 ↔ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴)) |
13 | | minmax 11171 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) |
14 | 13 | eqcomd 2171 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
-sup({-𝐴, -𝐵}, ℝ, < ) = inf({𝐴, 𝐵}, ℝ, < )) |
15 | | recn 7886 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
16 | 15 | adantr 274 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℂ) |
17 | 16 | negnegd 8200 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴) |
18 | 14, 17 | eqeq12d 2180 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐴 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
19 | 12, 18 | bitr3d 189 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
20 | 2 | adantl 275 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈
ℝ) |
21 | 20 | recnd 7927 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈
ℂ) |
22 | 9, 21 | neg11ad 8205 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐵 ↔ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵)) |
23 | | recn 7886 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
24 | 23 | adantl 275 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℂ) |
25 | 24 | negnegd 8200 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐵 = 𝐵) |
26 | 14, 25 | eqeq12d 2180 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
27 | 22, 26 | bitr3d 189 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
28 | 19, 27 | orbi12d 783 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ∨ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵) ↔ (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵))) |
29 | 6, 8, 28 | 3bitr3rd 218 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵) ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
30 | | mincl 11172 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
31 | | elprg 3596 |
. . 3
⊢
(inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ → (inf({𝐴,
𝐵}, ℝ, < ) ∈
{𝐴, 𝐵} ↔ (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵))) |
32 | 30, 31 | syl 14 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵))) |
33 | | orcom 718 |
. . 3
⊢ ((𝐵 ≤ 𝐴 ∨ 𝐴 ≤ 𝐵) ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
34 | | simpr 109 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) |
35 | | simpl 108 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℝ) |
36 | 34, 35 | lenegd 8422 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ -𝐴 ≤ -𝐵)) |
37 | | leneg 8363 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
38 | 36, 37 | orbi12d 783 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 ≤ 𝐴 ∨ 𝐴 ≤ 𝐵) ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
39 | 33, 38 | bitr3id 193 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
40 | 29, 32, 39 | 3bitr4d 219 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴))) |