Proof of Theorem minclpr
| Step | Hyp | Ref
| Expression |
| 1 | | renegcl 8304 |
. . . . 5
⊢ (𝐴 ∈ ℝ → -𝐴 ∈
ℝ) |
| 2 | | renegcl 8304 |
. . . . 5
⊢ (𝐵 ∈ ℝ → -𝐵 ∈
ℝ) |
| 3 | | maxcl 11392 |
. . . . 5
⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) →
sup({-𝐴, -𝐵}, ℝ, < ) ∈
ℝ) |
| 4 | 1, 2, 3 | syl2an 289 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
sup({-𝐴, -𝐵}, ℝ, < ) ∈
ℝ) |
| 5 | | elprg 3643 |
. . . 4
⊢
(sup({-𝐴, -𝐵}, ℝ, < ) ∈
ℝ → (sup({-𝐴,
-𝐵}, ℝ, < ) ∈
{-𝐴, -𝐵} ↔ (sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ∨ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵))) |
| 6 | 4, 5 | syl 14 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) ∈
{-𝐴, -𝐵} ↔ (sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ∨ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵))) |
| 7 | | maxclpr 11404 |
. . . 4
⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) ∈
{-𝐴, -𝐵} ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
| 8 | 1, 2, 7 | syl2an 289 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) ∈
{-𝐴, -𝐵} ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
| 9 | 4 | recnd 8072 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
sup({-𝐴, -𝐵}, ℝ, < ) ∈
ℂ) |
| 10 | 1 | adantr 276 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈
ℝ) |
| 11 | 10 | recnd 8072 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈
ℂ) |
| 12 | 9, 11 | neg11ad 8350 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐴 ↔ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴)) |
| 13 | | minmax 11412 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) |
| 14 | 13 | eqcomd 2202 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
-sup({-𝐴, -𝐵}, ℝ, < ) = inf({𝐴, 𝐵}, ℝ, < )) |
| 15 | | recn 8029 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 16 | 15 | adantr 276 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℂ) |
| 17 | 16 | negnegd 8345 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴) |
| 18 | 14, 17 | eqeq12d 2211 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐴 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
| 19 | 12, 18 | bitr3d 190 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
| 20 | 2 | adantl 277 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈
ℝ) |
| 21 | 20 | recnd 8072 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈
ℂ) |
| 22 | 9, 21 | neg11ad 8350 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐵 ↔ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵)) |
| 23 | | recn 8029 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
| 24 | 23 | adantl 277 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℂ) |
| 25 | 24 | negnegd 8345 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐵 = 𝐵) |
| 26 | 14, 25 | eqeq12d 2211 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
| 27 | 22, 26 | bitr3d 190 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
| 28 | 19, 27 | orbi12d 794 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ∨ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵) ↔ (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵))) |
| 29 | 6, 8, 28 | 3bitr3rd 219 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵) ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
| 30 | | mincl 11413 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
| 31 | | elprg 3643 |
. . 3
⊢
(inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ → (inf({𝐴,
𝐵}, ℝ, < ) ∈
{𝐴, 𝐵} ↔ (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵))) |
| 32 | 30, 31 | syl 14 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵))) |
| 33 | | orcom 729 |
. . 3
⊢ ((𝐵 ≤ 𝐴 ∨ 𝐴 ≤ 𝐵) ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| 34 | | simpr 110 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) |
| 35 | | simpl 109 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℝ) |
| 36 | 34, 35 | lenegd 8568 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ -𝐴 ≤ -𝐵)) |
| 37 | | leneg 8509 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
| 38 | 36, 37 | orbi12d 794 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 ≤ 𝐴 ∨ 𝐴 ≤ 𝐵) ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
| 39 | 33, 38 | bitr3id 194 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴))) |
| 40 | 29, 32, 39 | 3bitr4d 220 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴))) |