ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minclpr GIF version

Theorem minclpr 11490
Description: The minimum of two real numbers is one of those numbers if and only if dichotomy (𝐴𝐵𝐵𝐴) holds. For example, this can be combined with zletric 9415 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.)
Assertion
Ref Expression
minclpr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem minclpr
StepHypRef Expression
1 renegcl 8332 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 renegcl 8332 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
3 maxcl 11463 . . . . 5 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
41, 2, 3syl2an 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
5 elprg 3652 . . . 4 (sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ → (sup({-𝐴, -𝐵}, ℝ, < ) ∈ {-𝐴, -𝐵} ↔ (sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ∨ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵)))
64, 5syl 14 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({-𝐴, -𝐵}, ℝ, < ) ∈ {-𝐴, -𝐵} ↔ (sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ∨ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵)))
7 maxclpr 11475 . . . 4 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (sup({-𝐴, -𝐵}, ℝ, < ) ∈ {-𝐴, -𝐵} ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴)))
81, 2, 7syl2an 289 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({-𝐴, -𝐵}, ℝ, < ) ∈ {-𝐴, -𝐵} ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴)))
94recnd 8100 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℂ)
101adantr 276 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℝ)
1110recnd 8100 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℂ)
129, 11neg11ad 8378 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐴 ↔ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴))
13 minmax 11483 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
1413eqcomd 2210 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) = inf({𝐴, 𝐵}, ℝ, < ))
15 recn 8057 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1615adantr 276 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
1716negnegd 8373 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴)
1814, 17eqeq12d 2219 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐴 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴))
1912, 18bitr3d 190 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴))
202adantl 277 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈ ℝ)
2120recnd 8100 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈ ℂ)
229, 21neg11ad 8378 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐵 ↔ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵))
23 recn 8057 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2423adantl 277 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
2524negnegd 8373 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐵 = 𝐵)
2614, 25eqeq12d 2219 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) = --𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵))
2722, 26bitr3d 190 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵))
2819, 27orbi12d 794 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sup({-𝐴, -𝐵}, ℝ, < ) = -𝐴 ∨ sup({-𝐴, -𝐵}, ℝ, < ) = -𝐵) ↔ (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵)))
296, 8, 283bitr3rd 219 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵) ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴)))
30 mincl 11484 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
31 elprg 3652 . . 3 (inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵)))
3230, 31syl 14 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ∨ inf({𝐴, 𝐵}, ℝ, < ) = 𝐵)))
33 orcom 729 . . 3 ((𝐵𝐴𝐴𝐵) ↔ (𝐴𝐵𝐵𝐴))
34 simpr 110 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
35 simpl 109 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
3634, 35lenegd 8596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ -𝐴 ≤ -𝐵))
37 leneg 8537 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))
3836, 37orbi12d 794 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴𝐴𝐵) ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴)))
3933, 38bitr3id 194 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵𝐴) ↔ (-𝐴 ≤ -𝐵 ∨ -𝐵 ≤ -𝐴)))
4029, 32, 393bitr4d 220 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1372  wcel 2175  {cpr 3633   class class class wbr 4043  supcsup 7083  infcinf 7084  cc 7922  cr 7923   < clt 8106  cle 8107  -cneg 8243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252
This theorem is referenced by:  qtopbas  14936
  Copyright terms: Public domain W3C validator