| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqneg | GIF version | ||
| Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| eqneg | ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1p1times 8276 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 2 | ax-1cn 8088 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 3 | 2, 2 | addcli 8146 | . . . . 5 ⊢ (1 + 1) ∈ ℂ |
| 4 | 3 | mul01i 8533 | . . . 4 ⊢ ((1 + 1) · 0) = 0 |
| 5 | negid 8389 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
| 6 | 4, 5 | eqtr4id 2281 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴)) |
| 7 | 1, 6 | eqeq12d 2244 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴))) |
| 8 | id 19 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 9 | 0cnd 8135 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
| 10 | 3 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ) |
| 11 | 1re 8141 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 12 | 11, 11 | readdcli 8155 | . . . . 5 ⊢ (1 + 1) ∈ ℝ |
| 13 | 0lt1 8269 | . . . . . 6 ⊢ 0 < 1 | |
| 14 | 11, 11, 13, 13 | addgt0ii 8634 | . . . . 5 ⊢ 0 < (1 + 1) |
| 15 | 12, 14 | gt0ap0ii 8771 | . . . 4 ⊢ (1 + 1) # 0 |
| 16 | 15 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) # 0) |
| 17 | 8, 9, 10, 16 | mulcanapd 8804 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0)) |
| 18 | negcl 8342 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 19 | 8, 8, 18 | addcand 8326 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴)) |
| 20 | 7, 17, 19 | 3bitr3rd 219 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℂcc 7993 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 -cneg 8314 # cap 8724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 |
| This theorem is referenced by: eqnegd 8876 eqnegi 8884 |
| Copyright terms: Public domain | W3C validator |