![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqneg | GIF version |
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
eqneg | ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1p1times 8122 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
2 | ax-1cn 7935 | . . . . . 6 ⊢ 1 ∈ ℂ | |
3 | 2, 2 | addcli 7992 | . . . . 5 ⊢ (1 + 1) ∈ ℂ |
4 | 3 | mul01i 8379 | . . . 4 ⊢ ((1 + 1) · 0) = 0 |
5 | negid 8235 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
6 | 4, 5 | eqtr4id 2241 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴)) |
7 | 1, 6 | eqeq12d 2204 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴))) |
8 | id 19 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
9 | 0cnd 7981 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
10 | 3 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ) |
11 | 1re 7987 | . . . . . 6 ⊢ 1 ∈ ℝ | |
12 | 11, 11 | readdcli 8001 | . . . . 5 ⊢ (1 + 1) ∈ ℝ |
13 | 0lt1 8115 | . . . . . 6 ⊢ 0 < 1 | |
14 | 11, 11, 13, 13 | addgt0ii 8479 | . . . . 5 ⊢ 0 < (1 + 1) |
15 | 12, 14 | gt0ap0ii 8616 | . . . 4 ⊢ (1 + 1) # 0 |
16 | 15 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) # 0) |
17 | 8, 9, 10, 16 | mulcanapd 8649 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0)) |
18 | negcl 8188 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
19 | 8, 8, 18 | addcand 8172 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴)) |
20 | 7, 17, 19 | 3bitr3rd 219 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5897 ℂcc 7840 0cc0 7842 1c1 7843 + caddc 7845 · cmul 7847 -cneg 8160 # cap 8569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 |
This theorem is referenced by: eqnegd 8721 eqnegi 8729 |
Copyright terms: Public domain | W3C validator |