| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqneg | GIF version | ||
| Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| eqneg | ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1p1times 8241 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 2 | ax-1cn 8053 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 3 | 2, 2 | addcli 8111 | . . . . 5 ⊢ (1 + 1) ∈ ℂ |
| 4 | 3 | mul01i 8498 | . . . 4 ⊢ ((1 + 1) · 0) = 0 |
| 5 | negid 8354 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
| 6 | 4, 5 | eqtr4id 2259 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴)) |
| 7 | 1, 6 | eqeq12d 2222 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴))) |
| 8 | id 19 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 9 | 0cnd 8100 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
| 10 | 3 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ) |
| 11 | 1re 8106 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 12 | 11, 11 | readdcli 8120 | . . . . 5 ⊢ (1 + 1) ∈ ℝ |
| 13 | 0lt1 8234 | . . . . . 6 ⊢ 0 < 1 | |
| 14 | 11, 11, 13, 13 | addgt0ii 8599 | . . . . 5 ⊢ 0 < (1 + 1) |
| 15 | 12, 14 | gt0ap0ii 8736 | . . . 4 ⊢ (1 + 1) # 0 |
| 16 | 15 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) # 0) |
| 17 | 8, 9, 10, 16 | mulcanapd 8769 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0)) |
| 18 | negcl 8307 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 19 | 8, 8, 18 | addcand 8291 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴)) |
| 20 | 7, 17, 19 | 3bitr3rd 219 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 ℂcc 7958 0cc0 7960 1c1 7961 + caddc 7963 · cmul 7965 -cneg 8279 # cap 8689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 |
| This theorem is referenced by: eqnegd 8841 eqnegi 8849 |
| Copyright terms: Public domain | W3C validator |