ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneg GIF version

Theorem eqneg 8840
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
eqneg (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))

Proof of Theorem eqneg
StepHypRef Expression
1 1p1times 8241 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
2 ax-1cn 8053 . . . . . 6 1 ∈ ℂ
32, 2addcli 8111 . . . . 5 (1 + 1) ∈ ℂ
43mul01i 8498 . . . 4 ((1 + 1) · 0) = 0
5 negid 8354 . . . 4 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
64, 5eqtr4id 2259 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴))
71, 6eqeq12d 2222 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴)))
8 id 19 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
9 0cnd 8100 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℂ)
103a1i 9 . . 3 (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ)
11 1re 8106 . . . . . 6 1 ∈ ℝ
1211, 11readdcli 8120 . . . . 5 (1 + 1) ∈ ℝ
13 0lt1 8234 . . . . . 6 0 < 1
1411, 11, 13, 13addgt0ii 8599 . . . . 5 0 < (1 + 1)
1512, 14gt0ap0ii 8736 . . . 4 (1 + 1) # 0
1615a1i 9 . . 3 (𝐴 ∈ ℂ → (1 + 1) # 0)
178, 9, 10, 16mulcanapd 8769 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0))
18 negcl 8307 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
198, 8, 18addcand 8291 . 2 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴))
207, 17, 193bitr3rd 219 1 (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2178   class class class wbr 4059  (class class class)co 5967  cc 7958  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965  -cneg 8279   # cap 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690
This theorem is referenced by:  eqnegd  8841  eqnegi  8849
  Copyright terms: Public domain W3C validator