ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneg GIF version

Theorem eqneg 8875
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
eqneg (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))

Proof of Theorem eqneg
StepHypRef Expression
1 1p1times 8276 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
2 ax-1cn 8088 . . . . . 6 1 ∈ ℂ
32, 2addcli 8146 . . . . 5 (1 + 1) ∈ ℂ
43mul01i 8533 . . . 4 ((1 + 1) · 0) = 0
5 negid 8389 . . . 4 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
64, 5eqtr4id 2281 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴))
71, 6eqeq12d 2244 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴)))
8 id 19 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
9 0cnd 8135 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℂ)
103a1i 9 . . 3 (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ)
11 1re 8141 . . . . . 6 1 ∈ ℝ
1211, 11readdcli 8155 . . . . 5 (1 + 1) ∈ ℝ
13 0lt1 8269 . . . . . 6 0 < 1
1411, 11, 13, 13addgt0ii 8634 . . . . 5 0 < (1 + 1)
1512, 14gt0ap0ii 8771 . . . 4 (1 + 1) # 0
1615a1i 9 . . 3 (𝐴 ∈ ℂ → (1 + 1) # 0)
178, 9, 10, 16mulcanapd 8804 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0))
18 negcl 8342 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
198, 8, 18addcand 8326 . 2 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴))
207, 17, 193bitr3rd 219 1 (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 6000  cc 7993  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000  -cneg 8314   # cap 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725
This theorem is referenced by:  eqnegd  8876  eqnegi  8884
  Copyright terms: Public domain W3C validator