![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funconstss | GIF version |
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.) |
Ref | Expression |
---|---|
funconstss | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimass4 5355 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ {𝐵} ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) | |
2 | funimass3 5415 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ {𝐵} ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
3 | ssel2 3020 | . . . . . 6 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) | |
4 | 3 | anim2i 334 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴)) → (Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹)) |
5 | 4 | anassrs 392 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → (Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹)) |
6 | funfvex 5322 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
7 | elsng 3461 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵)) | |
8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵)) |
9 | 8 | ralbidva 2376 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵} ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
10 | 1, 2, 9 | 3bitr3rd 217 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 ∀wral 2359 Vcvv 2619 ⊆ wss 2999 {csn 3446 ◡ccnv 4437 dom cdm 4438 “ cima 4441 Fun wfun 5009 ‘cfv 5015 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-fv 5023 |
This theorem is referenced by: fconst3m 5516 |
Copyright terms: Public domain | W3C validator |