| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funconstss | GIF version | ||
| Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.) |
| Ref | Expression |
|---|---|
| funconstss | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 5657 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ {𝐵} ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) | |
| 2 | funimass3 5724 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ {𝐵} ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
| 3 | ssel2 3199 | . . . . . 6 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) | |
| 4 | 3 | anim2i 342 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴)) → (Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹)) |
| 5 | 4 | anassrs 400 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → (Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹)) |
| 6 | funfvex 5620 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
| 7 | elsng 3661 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵)) | |
| 8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵)) |
| 9 | 8 | ralbidva 2506 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵} ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
| 10 | 1, 2, 9 | 3bitr3rd 219 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 ⊆ wss 3177 {csn 3646 ◡ccnv 4695 dom cdm 4696 “ cima 4699 Fun wfun 5288 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 |
| This theorem is referenced by: fconst3m 5831 |
| Copyright terms: Public domain | W3C validator |