![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funconstss | GIF version |
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.) |
Ref | Expression |
---|---|
funconstss | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimass4 5567 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ {𝐵} ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) | |
2 | funimass3 5633 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ {𝐵} ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
3 | ssel2 3151 | . . . . . 6 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) | |
4 | 3 | anim2i 342 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴)) → (Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹)) |
5 | 4 | anassrs 400 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → (Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹)) |
6 | funfvex 5533 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
7 | elsng 3608 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵)) | |
8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵)) |
9 | 8 | ralbidva 2473 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵} ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
10 | 1, 2, 9 | 3bitr3rd 219 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 Vcvv 2738 ⊆ wss 3130 {csn 3593 ◡ccnv 4626 dom cdm 4627 “ cima 4630 Fun wfun 5211 ‘cfv 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-fv 5225 |
This theorem is referenced by: fconst3m 5736 |
Copyright terms: Public domain | W3C validator |