ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funconstss GIF version

Theorem funconstss 5603
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
funconstss ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem funconstss
StepHypRef Expression
1 funimass4 5537 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ {𝐵} ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}))
2 funimass3 5601 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ {𝐵} ↔ 𝐴 ⊆ (𝐹 “ {𝐵})))
3 ssel2 3137 . . . . . 6 ((𝐴 ⊆ dom 𝐹𝑥𝐴) → 𝑥 ∈ dom 𝐹)
43anim2i 340 . . . . 5 ((Fun 𝐹 ∧ (𝐴 ⊆ dom 𝐹𝑥𝐴)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
54anassrs 398 . . . 4 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → (Fun 𝐹𝑥 ∈ dom 𝐹))
6 funfvex 5503 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
7 elsng 3591 . . . 4 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
85, 6, 73syl 17 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
98ralbidva 2462 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵} ↔ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
101, 2, 93bitr3rd 218 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  wss 3116  {csn 3576  ccnv 4603  dom cdm 4604  cima 4607  Fun wfun 5182  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  fconst3m  5704
  Copyright terms: Public domain W3C validator