ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funconstss GIF version

Theorem funconstss 5705
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
funconstss ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem funconstss
StepHypRef Expression
1 funimass4 5636 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ {𝐵} ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}))
2 funimass3 5703 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ {𝐵} ↔ 𝐴 ⊆ (𝐹 “ {𝐵})))
3 ssel2 3189 . . . . . 6 ((𝐴 ⊆ dom 𝐹𝑥𝐴) → 𝑥 ∈ dom 𝐹)
43anim2i 342 . . . . 5 ((Fun 𝐹 ∧ (𝐴 ⊆ dom 𝐹𝑥𝐴)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
54anassrs 400 . . . 4 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → (Fun 𝐹𝑥 ∈ dom 𝐹))
6 funfvex 5600 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
7 elsng 3649 . . . 4 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
85, 6, 73syl 17 . . 3 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
98ralbidva 2503 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵} ↔ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
101, 2, 93bitr3rd 219 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  wss 3167  {csn 3634  ccnv 4678  dom cdm 4679  cima 4682  Fun wfun 5270  cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284
This theorem is referenced by:  fconst3m  5810
  Copyright terms: Public domain W3C validator