Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 189 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: csbcomg 3072 eloprabga 5938 ereldm 6553 mapen 6821 ordiso2 7009 subcan 8163 conjmulap 8635 ltrec 8788 divelunit 9948 fseq1m1p1 10040 fzm1 10045 qsqeqor 10575 fihashneq0 10718 hashfacen 10760 cvg1nlemcau 10937 lenegsq 11048 dvdsmod 11811 bezoutlemle 11952 rpexp 12096 qnumdenbi 12135 eulerthlemh 12174 odzdvds 12188 pcelnn 12263 grpidpropdg 12617 mndpropd 12665 mhmpropd 12678 grppropd 12713 bdxmet 13256 txmetcnp 13273 cnmet 13285 lgsne0 13694 lgsabs1 13695 |
Copyright terms: Public domain | W3C validator |