![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 190 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: csbcomg 3092 eloprabga 5975 ereldm 6592 mapen 6860 ordiso2 7048 subcan 8226 conjmulap 8700 ltrec 8854 divelunit 10016 fseq1m1p1 10109 fzm1 10114 qsqeqor 10645 fihashneq0 10788 hashfacen 10830 cvg1nlemcau 11007 lenegsq 11118 dvdsmod 11882 bezoutlemle 12023 rpexp 12167 qnumdenbi 12206 eulerthlemh 12245 odzdvds 12259 pcelnn 12334 grpidpropdg 12812 sgrppropd 12838 mndpropd 12863 mhmpropd 12879 grppropd 12915 cmnpropd 13132 qusecsub 13166 rngpropd 13207 ringpropd 13290 dvdsrpropdg 13395 lmodprop2d 13537 lsspropdg 13620 bdxmet 14297 txmetcnp 14314 cnmet 14326 lgsne0 14735 lgsabs1 14736 |
Copyright terms: Public domain | W3C validator |