| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 190 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: csbcomg 3107 eloprabga 6009 ereldm 6637 mapen 6907 ordiso2 7101 subcan 8281 conjmulap 8756 ltrec 8910 divelunit 10077 fseq1m1p1 10170 fzm1 10175 qsqeqor 10742 fihashneq0 10886 hashfacen 10928 cvg1nlemcau 11149 lenegsq 11260 dvdsmod 12027 bezoutlemle 12175 rpexp 12321 qnumdenbi 12360 eulerthlemh 12399 odzdvds 12414 pcelnn 12490 grpidpropdg 13017 sgrppropd 13056 mndpropd 13081 mhmpropd 13098 grppropd 13149 ghmnsgima 13398 cmnpropd 13425 qusecsub 13461 rngpropd 13511 ringpropd 13594 dvdsrpropdg 13703 resrhm2b 13805 lmodprop2d 13904 lsspropdg 13987 zndvds0 14206 bdxmet 14737 txmetcnp 14754 cnmet 14766 lgsne0 15279 lgsabs1 15280 gausslemma2dlem1a 15299 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |