| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 190 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: csbcomg 3107 eloprabga 6013 ereldm 6646 mapen 6916 ordiso2 7110 subcan 8298 conjmulap 8773 ltrec 8927 divelunit 10094 fseq1m1p1 10187 fzm1 10192 qsqeqor 10759 fihashneq0 10903 hashfacen 10945 cvg1nlemcau 11166 lenegsq 11277 dvdsmod 12044 bitsmod 12138 bezoutlemle 12200 rpexp 12346 qnumdenbi 12385 eulerthlemh 12424 odzdvds 12439 pcelnn 12515 grpidpropdg 13076 sgrppropd 13115 mndpropd 13142 mhmpropd 13168 grppropd 13219 ghmnsgima 13474 cmnpropd 13501 qusecsub 13537 rngpropd 13587 ringpropd 13670 dvdsrpropdg 13779 resrhm2b 13881 lmodprop2d 13980 lsspropdg 14063 zndvds0 14282 bdxmet 14821 txmetcnp 14838 cnmet 14850 lgsne0 15363 lgsabs1 15364 gausslemma2dlem1a 15383 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |