| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 190 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: csbcomg 3107 eloprabga 6013 ereldm 6646 mapen 6916 ordiso2 7110 subcan 8300 conjmulap 8775 ltrec 8929 divelunit 10096 fseq1m1p1 10189 fzm1 10194 qsqeqor 10761 fihashneq0 10905 hashfacen 10947 cvg1nlemcau 11168 lenegsq 11279 dvdsmod 12046 bitsmod 12140 bezoutlemle 12202 rpexp 12348 qnumdenbi 12387 eulerthlemh 12426 odzdvds 12441 pcelnn 12517 grpidpropdg 13078 sgrppropd 13117 mndpropd 13144 mhmpropd 13170 grppropd 13221 ghmnsgima 13476 cmnpropd 13503 qusecsub 13539 rngpropd 13589 ringpropd 13672 dvdsrpropdg 13781 resrhm2b 13883 lmodprop2d 13982 lsspropdg 14065 zndvds0 14284 bdxmet 14823 txmetcnp 14840 cnmet 14852 lgsne0 15365 lgsabs1 15366 gausslemma2dlem1a 15385 lgsquadlem2 15405 |
| Copyright terms: Public domain | W3C validator |