Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 189 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: csbcomg 3072 eloprabga 5940 ereldm 6556 mapen 6824 ordiso2 7012 subcan 8174 conjmulap 8646 ltrec 8799 divelunit 9959 fseq1m1p1 10051 fzm1 10056 qsqeqor 10586 fihashneq0 10729 hashfacen 10771 cvg1nlemcau 10948 lenegsq 11059 dvdsmod 11822 bezoutlemle 11963 rpexp 12107 qnumdenbi 12146 eulerthlemh 12185 odzdvds 12199 pcelnn 12274 grpidpropdg 12628 mndpropd 12676 mhmpropd 12689 grppropd 12724 bdxmet 13295 txmetcnp 13312 cnmet 13324 lgsne0 13733 lgsabs1 13734 |
Copyright terms: Public domain | W3C validator |