| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 190 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: csbcomg 3107 eloprabga 6010 ereldm 6638 mapen 6908 ordiso2 7102 subcan 8283 conjmulap 8758 ltrec 8912 divelunit 10079 fseq1m1p1 10172 fzm1 10177 qsqeqor 10744 fihashneq0 10888 hashfacen 10930 cvg1nlemcau 11151 lenegsq 11262 dvdsmod 12029 bitsmod 12123 bezoutlemle 12185 rpexp 12331 qnumdenbi 12370 eulerthlemh 12409 odzdvds 12424 pcelnn 12500 grpidpropdg 13027 sgrppropd 13066 mndpropd 13091 mhmpropd 13108 grppropd 13159 ghmnsgima 13408 cmnpropd 13435 qusecsub 13471 rngpropd 13521 ringpropd 13604 dvdsrpropdg 13713 resrhm2b 13815 lmodprop2d 13914 lsspropdg 13997 zndvds0 14216 bdxmet 14747 txmetcnp 14764 cnmet 14776 lgsne0 15289 lgsabs1 15290 gausslemma2dlem1a 15309 lgsquadlem2 15329 |
| Copyright terms: Public domain | W3C validator |