| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 190 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: csbcomg 3147 eloprabga 6097 ereldm 6733 mapen 7015 ordiso2 7210 subcan 8409 conjmulap 8884 ltrec 9038 divelunit 10206 fseq1m1p1 10299 fzm1 10304 qsqeqor 10880 fihashneq0 11024 hashfacen 11066 ccat0 11139 cvg1nlemcau 11503 lenegsq 11614 dvdsmod 12381 bitsmod 12475 bezoutlemle 12537 rpexp 12683 qnumdenbi 12722 eulerthlemh 12761 odzdvds 12776 pcelnn 12852 grpidpropdg 13415 sgrppropd 13454 mndpropd 13481 mhmpropd 13507 grppropd 13558 ghmnsgima 13813 cmnpropd 13840 qusecsub 13876 rngpropd 13926 ringpropd 14009 dvdsrpropdg 14119 resrhm2b 14221 lmodprop2d 14320 lsspropdg 14403 zndvds0 14622 bdxmet 15183 txmetcnp 15200 cnmet 15212 lgsne0 15725 lgsabs1 15726 gausslemma2dlem1a 15745 lgsquadlem2 15765 usgredg2v 16030 wlkeq 16075 |
| Copyright terms: Public domain | W3C validator |