Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 189 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: csbcomg 3068 eloprabga 5929 ereldm 6544 mapen 6812 ordiso2 7000 subcan 8153 conjmulap 8625 ltrec 8778 divelunit 9938 fseq1m1p1 10030 fzm1 10035 qsqeqor 10565 fihashneq0 10708 hashfacen 10749 cvg1nlemcau 10926 lenegsq 11037 dvdsmod 11800 bezoutlemle 11941 rpexp 12085 qnumdenbi 12124 eulerthlemh 12163 odzdvds 12177 pcelnn 12252 grpidpropdg 12605 bdxmet 13141 txmetcnp 13158 cnmet 13170 lgsne0 13579 lgsabs1 13580 |
Copyright terms: Public domain | W3C validator |