| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 190 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: csbcomg 3117 eloprabga 6039 ereldm 6672 mapen 6950 ordiso2 7144 subcan 8334 conjmulap 8809 ltrec 8963 divelunit 10131 fseq1m1p1 10224 fzm1 10229 qsqeqor 10802 fihashneq0 10946 hashfacen 10988 ccat0 11060 cvg1nlemcau 11339 lenegsq 11450 dvdsmod 12217 bitsmod 12311 bezoutlemle 12373 rpexp 12519 qnumdenbi 12558 eulerthlemh 12597 odzdvds 12612 pcelnn 12688 grpidpropdg 13250 sgrppropd 13289 mndpropd 13316 mhmpropd 13342 grppropd 13393 ghmnsgima 13648 cmnpropd 13675 qusecsub 13711 rngpropd 13761 ringpropd 13844 dvdsrpropdg 13953 resrhm2b 14055 lmodprop2d 14154 lsspropdg 14237 zndvds0 14456 bdxmet 15017 txmetcnp 15034 cnmet 15046 lgsne0 15559 lgsabs1 15560 gausslemma2dlem1a 15579 lgsquadlem2 15599 |
| Copyright terms: Public domain | W3C validator |