| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 190 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: csbcomg 3127 eloprabga 6062 ereldm 6695 mapen 6975 ordiso2 7170 subcan 8369 conjmulap 8844 ltrec 8998 divelunit 10166 fseq1m1p1 10259 fzm1 10264 qsqeqor 10839 fihashneq0 10983 hashfacen 11025 ccat0 11097 cvg1nlemcau 11461 lenegsq 11572 dvdsmod 12339 bitsmod 12433 bezoutlemle 12495 rpexp 12641 qnumdenbi 12680 eulerthlemh 12719 odzdvds 12734 pcelnn 12810 grpidpropdg 13373 sgrppropd 13412 mndpropd 13439 mhmpropd 13465 grppropd 13516 ghmnsgima 13771 cmnpropd 13798 qusecsub 13834 rngpropd 13884 ringpropd 13967 dvdsrpropdg 14076 resrhm2b 14178 lmodprop2d 14277 lsspropdg 14360 zndvds0 14579 bdxmet 15140 txmetcnp 15157 cnmet 15169 lgsne0 15682 lgsabs1 15683 gausslemma2dlem1a 15702 lgsquadlem2 15722 usgredg2v 15987 |
| Copyright terms: Public domain | W3C validator |