![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr3d | GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 190 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: csbcomg 3080 eloprabga 5961 ereldm 6577 mapen 6845 ordiso2 7033 subcan 8211 conjmulap 8685 ltrec 8839 divelunit 10001 fseq1m1p1 10094 fzm1 10099 qsqeqor 10630 fihashneq0 10773 hashfacen 10815 cvg1nlemcau 10992 lenegsq 11103 dvdsmod 11867 bezoutlemle 12008 rpexp 12152 qnumdenbi 12191 eulerthlemh 12230 odzdvds 12244 pcelnn 12319 grpidpropdg 12792 mndpropd 12840 mhmpropd 12856 grppropd 12892 cmnpropd 13096 ringpropd 13215 dvdsrpropdg 13314 bdxmet 13971 txmetcnp 13988 cnmet 14000 lgsne0 14409 lgsabs1 14410 |
Copyright terms: Public domain | W3C validator |