ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmzsubg GIF version

Theorem nmzsubg 13283
Description: The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
nmzsubg (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem nmzsubg
Dummy variables 𝑧 𝑤 𝑢 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
21ssrab3 3266 . . 3 𝑁𝑋
32a1i 9 . 2 (𝐺 ∈ Grp → 𝑁𝑋)
4 nmzsubg.2 . . . . 5 𝑋 = (Base‘𝐺)
5 eqid 2193 . . . . 5 (0g𝐺) = (0g𝐺)
64, 5grpidcl 13104 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
7 nmzsubg.3 . . . . . . . 8 + = (+g𝐺)
84, 7, 5grplid 13106 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
94, 7, 5grprid 13107 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + (0g𝐺)) = 𝑧)
108, 9eqtr4d 2229 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = (𝑧 + (0g𝐺)))
1110eleq1d 2262 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
1211ralrimiva 2567 . . . 4 (𝐺 ∈ Grp → ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
131elnmz 13281 . . . 4 ((0g𝐺) ∈ 𝑁 ↔ ((0g𝐺) ∈ 𝑋 ∧ ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆)))
146, 12, 13sylanbrc 417 . . 3 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑁)
15 elex2 2776 . . 3 ((0g𝐺) ∈ 𝑁 → ∃𝑎 𝑎𝑁)
1614, 15syl 14 . 2 (𝐺 ∈ Grp → ∃𝑎 𝑎𝑁)
17 id 19 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
182sseli 3176 . . . . . . . 8 (𝑧𝑁𝑧𝑋)
192sseli 3176 . . . . . . . 8 (𝑤𝑁𝑤𝑋)
204, 7grpcl 13083 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧 + 𝑤) ∈ 𝑋)
2117, 18, 19, 20syl3an 1291 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑋)
22 simpl1 1002 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
23 simpl2 1003 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
242, 23sselid 3178 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
25 simpl3 1004 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑁)
262, 25sselid 3178 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑋)
27 simpr 110 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
284, 7grpass 13084 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑧𝑋𝑤𝑋𝑢𝑋)) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
2922, 24, 26, 27, 28syl13anc 1251 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
3029eleq1d 2262 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑧 + (𝑤 + 𝑢)) ∈ 𝑆))
314, 7, 22, 26, 27grpcld 13089 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
321nmzbi 13282 . . . . . . . . . . 11 ((𝑧𝑁 ∧ (𝑤 + 𝑢) ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
3323, 31, 32syl2anc 411 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
344, 7grpass 13084 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑤𝑋𝑢𝑋𝑧𝑋)) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3522, 26, 27, 24, 34syl13anc 1251 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3635eleq1d 2262 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑤 + 𝑢) + 𝑧) ∈ 𝑆 ↔ (𝑤 + (𝑢 + 𝑧)) ∈ 𝑆))
374, 7, 22, 27, 24grpcld 13089 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑢 + 𝑧) ∈ 𝑋)
381nmzbi 13282 . . . . . . . . . . 11 ((𝑤𝑁 ∧ (𝑢 + 𝑧) ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
3925, 37, 38syl2anc 411 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
4033, 36, 393bitrd 214 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
414, 7grpass 13084 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑧𝑋𝑤𝑋)) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4222, 27, 24, 26, 41syl13anc 1251 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4342eleq1d 2262 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑢 + 𝑧) + 𝑤) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4430, 40, 433bitrd 214 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4544ralrimiva 2567 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
461elnmz 13281 . . . . . . 7 ((𝑧 + 𝑤) ∈ 𝑁 ↔ ((𝑧 + 𝑤) ∈ 𝑋 ∧ ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)))
4721, 45, 46sylanbrc 417 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
48473expa 1205 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
4948ralrimiva 2567 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁)
50 eqid 2193 . . . . . . 7 (invg𝐺) = (invg𝐺)
514, 50grpinvcl 13123 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
5218, 51sylan2 286 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑋)
53 simplr 528 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
54 simpll 527 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
5552adantr 276 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
56 simpr 110 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
574, 7, 54, 56, 55grpcld 13089 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)
584, 7, 54, 55, 57grpcld 13089 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋)
591nmzbi 13282 . . . . . . . 8 ((𝑧𝑁 ∧ (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
6053, 58, 59syl2anc 411 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
612, 53sselid 3178 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
624, 7, 5, 50grprinv 13126 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6354, 61, 62syl2anc 411 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6463oveq1d 5934 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))))
654, 7grpass 13084 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑧𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
6654, 61, 55, 57, 65syl13anc 1251 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
674, 7, 5grplid 13106 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
6854, 57, 67syl2anc 411 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
6964, 66, 683eqtr3d 2234 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) = (𝑢 + ((invg𝐺)‘𝑧)))
7069eleq1d 2262 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
714, 7grpass 13084 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋𝑧𝑋)) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
7254, 55, 57, 61, 71syl13anc 1251 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
734, 7grpass 13084 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑢𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋)) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
7454, 56, 55, 61, 73syl13anc 1251 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
754, 7, 5, 50grplinv 13125 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
7654, 61, 75syl2anc 411 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
7776oveq2d 5935 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)) = (𝑢 + (0g𝐺)))
784, 7, 5grprid 13107 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
7954, 56, 78syl2anc 411 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
8074, 77, 793eqtrd 2230 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = 𝑢)
8180oveq2d 5935 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)) = (((invg𝐺)‘𝑧) + 𝑢))
8272, 81eqtrd 2226 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + 𝑢))
8382eleq1d 2262 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆 ↔ (((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆))
8460, 70, 833bitr3rd 219 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
8584ralrimiva 2567 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
861elnmz 13281 . . . . 5 (((invg𝐺)‘𝑧) ∈ 𝑁 ↔ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆)))
8752, 85, 86sylanbrc 417 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑁)
8849, 87jca 306 . . 3 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
8988ralrimiva 2567 . 2 (𝐺 ∈ Grp → ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
904, 7, 50issubg2m 13262 . 2 (𝐺 ∈ Grp → (𝑁 ∈ (SubGrp‘𝐺) ↔ (𝑁𝑋 ∧ ∃𝑎 𝑎𝑁 ∧ ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))))
913, 16, 89, 90mpbir3and 1182 1 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  {crab 2476  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  0gc0g 12870  Grpcgrp 13075  invgcminusg 13076  SubGrpcsubg 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243
This theorem is referenced by:  nmznsg  13286
  Copyright terms: Public domain W3C validator