Step | Hyp | Ref
| Expression |
1 | | elnmz.1 |
. . . 4
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
2 | 1 | ssrab3 3243 |
. . 3
⊢ 𝑁 ⊆ 𝑋 |
3 | 2 | a1i 9 |
. 2
⊢ (𝐺 ∈ Grp → 𝑁 ⊆ 𝑋) |
4 | | nmzsubg.2 |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
5 | | eqid 2177 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
6 | 4, 5 | grpidcl 12909 |
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
7 | | nmzsubg.3 |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
8 | 4, 7, 5 | grplid 12911 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺) + 𝑧) = 𝑧) |
9 | 4, 7, 5 | grprid 12912 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (𝑧 + (0g‘𝐺)) = 𝑧) |
10 | 8, 9 | eqtr4d 2213 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺) + 𝑧) = (𝑧 + (0g‘𝐺))) |
11 | 10 | eleq1d 2246 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((0g‘𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g‘𝐺)) ∈ 𝑆)) |
12 | 11 | ralrimiva 2550 |
. . . 4
⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝑋 (((0g‘𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g‘𝐺)) ∈ 𝑆)) |
13 | 1 | elnmz 13073 |
. . . 4
⊢
((0g‘𝐺) ∈ 𝑁 ↔ ((0g‘𝐺) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 (((0g‘𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g‘𝐺)) ∈ 𝑆))) |
14 | 6, 12, 13 | sylanbrc 417 |
. . 3
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑁) |
15 | | elex2 2755 |
. . 3
⊢
((0g‘𝐺) ∈ 𝑁 → ∃𝑎 𝑎 ∈ 𝑁) |
16 | 14, 15 | syl 14 |
. 2
⊢ (𝐺 ∈ Grp → ∃𝑎 𝑎 ∈ 𝑁) |
17 | | id 19 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) |
18 | 2 | sseli 3153 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑁 → 𝑧 ∈ 𝑋) |
19 | 2 | sseli 3153 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋) |
20 | 4, 7 | grpcl 12890 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑧 + 𝑤) ∈ 𝑋) |
21 | 17, 18, 19, 20 | syl3an 1280 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → (𝑧 + 𝑤) ∈ 𝑋) |
22 | | simpl1 1000 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝐺 ∈ Grp) |
23 | | simpl2 1001 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑁) |
24 | 2, 23 | sselid 3155 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
25 | | simpl3 1002 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑤 ∈ 𝑁) |
26 | 2, 25 | sselid 3155 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑤 ∈ 𝑋) |
27 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑢 ∈ 𝑋) |
28 | 4, 7 | grpass 12891 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢))) |
29 | 22, 24, 26, 27, 28 | syl13anc 1240 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢))) |
30 | 29 | eleq1d 2246 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑧 + (𝑤 + 𝑢)) ∈ 𝑆)) |
31 | 4, 7, 22, 26, 27 | grpcld 12895 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑤 + 𝑢) ∈ 𝑋) |
32 | 1 | nmzbi 13074 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑁 ∧ (𝑤 + 𝑢) ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆)) |
33 | 23, 31, 32 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆)) |
34 | 4, 7 | grpass 12891 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧))) |
35 | 22, 26, 27, 24, 34 | syl13anc 1240 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧))) |
36 | 35 | eleq1d 2246 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑤 + 𝑢) + 𝑧) ∈ 𝑆 ↔ (𝑤 + (𝑢 + 𝑧)) ∈ 𝑆)) |
37 | 4, 7, 22, 27, 24 | grpcld 12895 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 + 𝑧) ∈ 𝑋) |
38 | 1 | nmzbi 13074 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ 𝑁 ∧ (𝑢 + 𝑧) ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆)) |
39 | 25, 37, 38 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆)) |
40 | 33, 36, 39 | 3bitrd 214 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆)) |
41 | 4, 7 | grpass 12891 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤))) |
42 | 22, 27, 24, 26, 41 | syl13anc 1240 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤))) |
43 | 42 | eleq1d 2246 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑢 + 𝑧) + 𝑤) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)) |
44 | 30, 40, 43 | 3bitrd 214 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)) |
45 | 44 | ralrimiva 2550 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → ∀𝑢 ∈ 𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)) |
46 | 1 | elnmz 13073 |
. . . . . . 7
⊢ ((𝑧 + 𝑤) ∈ 𝑁 ↔ ((𝑧 + 𝑤) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))) |
47 | 21, 45, 46 | sylanbrc 417 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → (𝑧 + 𝑤) ∈ 𝑁) |
48 | 47 | 3expa 1203 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑤 ∈ 𝑁) → (𝑧 + 𝑤) ∈ 𝑁) |
49 | 48 | ralrimiva 2550 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁) |
50 | | eqid 2177 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
51 | 4, 50 | grpinvcl 12926 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
52 | 18, 51 | sylan2 286 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
53 | | simplr 528 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑁) |
54 | | simpll 527 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝐺 ∈ Grp) |
55 | 52 | adantr 276 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
56 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑢 ∈ 𝑋) |
57 | 4, 7, 54, 56, 55 | grpcld 12895 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) |
58 | 4, 7, 54, 55, 57 | grpcld 12895 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) ∈ 𝑋) |
59 | 1 | nmzbi 13074 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑁 ∧ (((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) ∈ 𝑋) → ((𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) ∈ 𝑆)) |
60 | 53, 58, 59 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) ∈ 𝑆)) |
61 | 2, 53 | sselid 3155 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
62 | 4, 7, 5, 50 | grprinv 12928 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (𝑧 +
((invg‘𝐺)‘𝑧)) = (0g‘𝐺)) |
63 | 54, 61, 62 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑧 +
((invg‘𝐺)‘𝑧)) = (0g‘𝐺)) |
64 | 63 | oveq1d 5892 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
((invg‘𝐺)‘𝑧)) + (𝑢 +
((invg‘𝐺)‘𝑧))) = ((0g‘𝐺) + (𝑢 +
((invg‘𝐺)‘𝑧)))) |
65 | 4, 7 | grpass 12891 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑧 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋)) → ((𝑧 +
((invg‘𝐺)‘𝑧)) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))))) |
66 | 54, 61, 55, 57, 65 | syl13anc 1240 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
((invg‘𝐺)‘𝑧)) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))))) |
67 | 4, 7, 5 | grplid 12911 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) → ((0g‘𝐺) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑢 +
((invg‘𝐺)‘𝑧))) |
68 | 54, 57, 67 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((0g‘𝐺) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑢 +
((invg‘𝐺)‘𝑧))) |
69 | 64, 66, 68 | 3eqtr3d 2218 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) = (𝑢 +
((invg‘𝐺)‘𝑧))) |
70 | 69 | eleq1d 2246 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
71 | 4, 7 | grpass 12891 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) = (((invg‘𝐺)‘𝑧) + ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧))) |
72 | 54, 55, 57, 61, 71 | syl13anc 1240 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) = (((invg‘𝐺)‘𝑧) + ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧))) |
73 | 4, 7 | grpass 12891 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧) = (𝑢 +
(((invg‘𝐺)‘𝑧) + 𝑧))) |
74 | 54, 56, 55, 61, 73 | syl13anc 1240 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧) = (𝑢 +
(((invg‘𝐺)‘𝑧) + 𝑧))) |
75 | 4, 7, 5, 50 | grplinv 12927 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
76 | 54, 61, 75 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
77 | 76 | oveq2d 5893 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 +
(((invg‘𝐺)‘𝑧) + 𝑧)) = (𝑢 + (0g‘𝐺))) |
78 | 4, 7, 5 | grprid 12912 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋) → (𝑢 + (0g‘𝐺)) = 𝑢) |
79 | 54, 56, 78 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 + (0g‘𝐺)) = 𝑢) |
80 | 74, 77, 79 | 3eqtrd 2214 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧) = 𝑢) |
81 | 80 | oveq2d 5893 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧)) = (((invg‘𝐺)‘𝑧) + 𝑢)) |
82 | 72, 81 | eqtrd 2210 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) = (((invg‘𝐺)‘𝑧) + 𝑢)) |
83 | 82 | eleq1d 2246 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) ∈ 𝑆 ↔ (((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆)) |
84 | 60, 70, 83 | 3bitr3rd 219 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
85 | 84 | ralrimiva 2550 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ∀𝑢 ∈ 𝑋 ((((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
86 | 1 | elnmz 13073 |
. . . . 5
⊢
(((invg‘𝐺)‘𝑧) ∈ 𝑁 ↔ (((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑋 ((((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆))) |
87 | 52, 85, 86 | sylanbrc 417 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ((invg‘𝐺)‘𝑧) ∈ 𝑁) |
88 | 49, 87 | jca 306 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → (∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑁)) |
89 | 88 | ralrimiva 2550 |
. 2
⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝑁 (∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑁)) |
90 | 4, 7, 50 | issubg2m 13054 |
. 2
⊢ (𝐺 ∈ Grp → (𝑁 ∈ (SubGrp‘𝐺) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑎 𝑎 ∈ 𝑁 ∧ ∀𝑧 ∈ 𝑁 (∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑁)))) |
91 | 3, 16, 89, 90 | mpbir3and 1180 |
1
⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |