ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcxplt2 GIF version

Theorem rpcxplt2 15435
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
rpcxplt2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑐𝐶) < (𝐵𝑐𝐶)))

Proof of Theorem rpcxplt2
StepHypRef Expression
1 simp3 1002 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
21rpred 9825 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
3 simp1 1000 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ+)
43relogcld 15398 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℝ)
52, 4remulcld 8110 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐴)) ∈ ℝ)
6 simp2 1001 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ+)
76relogcld 15398 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐵) ∈ ℝ)
82, 7remulcld 8110 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐵)) ∈ ℝ)
9 eflt 15291 . . 3 (((𝐶 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐵)) ∈ ℝ) → ((𝐶 · (log‘𝐴)) < (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) < (exp‘(𝐶 · (log‘𝐵)))))
105, 8, 9syl2anc 411 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐶 · (log‘𝐴)) < (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) < (exp‘(𝐶 · (log‘𝐵)))))
11 eflt 15291 . . . 4 (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴) < (log‘𝐵) ↔ (exp‘(log‘𝐴)) < (exp‘(log‘𝐵))))
124, 7, 11syl2anc 411 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) < (log‘𝐵) ↔ (exp‘(log‘𝐴)) < (exp‘(log‘𝐵))))
134, 7, 1ltmul2d 9868 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) < (log‘𝐵) ↔ (𝐶 · (log‘𝐴)) < (𝐶 · (log‘𝐵))))
143reeflogd 15399 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐴)) = 𝐴)
156reeflogd 15399 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐵)) = 𝐵)
1614, 15breq12d 4060 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((exp‘(log‘𝐴)) < (exp‘(log‘𝐵)) ↔ 𝐴 < 𝐵))
1712, 13, 163bitr3rd 219 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐶 · (log‘𝐴)) < (𝐶 · (log‘𝐵))))
181rpcnd 9827 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
19 rpcxpef 15410 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
203, 18, 19syl2anc 411 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
21 rpcxpef 15410 . . . 4 ((𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
226, 18, 21syl2anc 411 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
2320, 22breq12d 4060 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐴𝑐𝐶) < (𝐵𝑐𝐶) ↔ (exp‘(𝐶 · (log‘𝐴))) < (exp‘(𝐶 · (log‘𝐵)))))
2410, 17, 233bitr4d 220 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑐𝐶) < (𝐵𝑐𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4047  cfv 5276  (class class class)co 5951  cc 7930  cr 7931   · cmul 7937   < clt 8114  +crp 9782  expce 11997  logclog 15372  𝑐ccxp 15373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-pre-suploc 8053  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-disj 4024  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-map 6744  df-pm 6745  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-ioo 10021  df-ico 10023  df-icc 10024  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-fac 10878  df-bc 10900  df-ihash 10928  df-shft 11170  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ef 12003  df-e 12004  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-tx 14769  df-cncf 15087  df-limced 15172  df-dvap 15173  df-relog 15374  df-rpcxp 15375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator