ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgslem1 GIF version

Theorem lgslem1 15241
Description: When 𝑎 is coprime to the prime 𝑝, 𝑎↑((𝑝 − 1) / 2) is equivalent mod 𝑝 to 1 or -1, and so adding 1 makes it equivalent to 0 or 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgslem1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})

Proof of Theorem lgslem1
StepHypRef Expression
1 eldifi 3285 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
213ad2ant2 1021 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℙ)
3 prmnn 12278 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3syl 14 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℕ)
5 simp1 999 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
6 prmz 12279 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
72, 6syl 14 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℤ)
85, 7gcdcomd 12141 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
9 simp3 1001 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ¬ 𝑃𝐴)
10 coprm 12312 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
112, 5, 10syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
129, 11mpbid 147 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 gcd 𝐴) = 1)
138, 12eqtrd 2229 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = 1)
14 eulerth 12401 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
154, 5, 13, 14syl3anc 1249 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
16 phiprm 12391 . . . . . . . . . 10 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
172, 16syl 14 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − 1))
18 nnm1nn0 9290 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
194, 18syl 14 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℕ0)
2017, 19eqeltrd 2273 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) ∈ ℕ0)
21 zexpcl 10646 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
225, 20, 21syl2anc 411 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
23 1zzd 9353 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 1 ∈ ℤ)
24 moddvds 11964 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
254, 22, 23, 24syl3anc 1249 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
2615, 25mpbid 147 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1))
2719nn0cnd 9304 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℂ)
28 2cnd 9063 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℂ)
29 2ap0 9083 . . . . . . . . . . . . 13 2 # 0
3029a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 # 0)
3127, 28, 30divcanap1d 8818 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3217, 31eqtr4d 2232 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (((𝑃 − 1) / 2) · 2))
3332oveq2d 5938 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑(((𝑃 − 1) / 2) · 2)))
345zcnd 9449 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
35 2nn0 9266 . . . . . . . . . . 11 2 ∈ ℕ0
3635a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℕ0)
37 oddprm 12428 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
38373ad2ant2 1021 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ)
3938nnnn0d 9302 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ0)
4034, 36, 39expmuld 10768 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(((𝑃 − 1) / 2) · 2)) = ((𝐴↑((𝑃 − 1) / 2))↑2))
4133, 40eqtrd 2229 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = ((𝐴↑((𝑃 − 1) / 2))↑2))
4241oveq1d 5937 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2))↑2) − 1))
43 sq1 10725 . . . . . . . 8 (1↑2) = 1
4443oveq2i 5933 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2))↑2) − 1)
4542, 44eqtr4di 2247 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)))
46 zexpcl 10646 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
475, 39, 46syl2anc 411 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
4847zcnd 9449 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
49 ax-1cn 7972 . . . . . . 7 1 ∈ ℂ
50 subsq 10738 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5148, 49, 50sylancl 413 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5245, 51eqtrd 2229 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5326, 52breqtrd 4059 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5447peano2zd 9451 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
55 peano2zm 9364 . . . . . 6 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℤ → ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ)
5647, 55syl 14 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ)
57 euclemma 12314 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ ∧ ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))))
582, 54, 56, 57syl3anc 1249 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))))
5953, 58mpbid 147 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
60 dvdsval3 11956 . . . . 5 ((𝑃 ∈ ℕ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0))
614, 54, 60syl2anc 411 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0))
62 2z 9354 . . . . . . 7 2 ∈ ℤ
6362a1i 9 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℤ)
64 moddvds 11964 . . . . . 6 ((𝑃 ∈ ℕ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ ∧ 2 ∈ ℤ) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2)))
654, 54, 63, 64syl3anc 1249 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2)))
66 zq 9700 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ ℚ)
6762, 66mp1i 10 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℚ)
68 zq 9700 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
697, 68syl 14 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℚ)
70 0le2 9080 . . . . . . . 8 0 ≤ 2
7170a1i 9 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 0 ≤ 2)
72 eldifsni 3751 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
73723ad2ant2 1021 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ≠ 2)
74 zapne 9400 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑃 # 2 ↔ 𝑃 ≠ 2))
757, 62, 74sylancl 413 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 # 2 ↔ 𝑃 ≠ 2))
7673, 75mpbird 167 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 # 2)
77 2re 9060 . . . . . . . . . 10 2 ∈ ℝ
7877a1i 9 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℝ)
794nnred 9003 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ)
80 prmuz2 12299 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
812, 80syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
82 eluzle 9613 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
8381, 82syl 14 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ≤ 𝑃)
8478, 79, 83leltapd 8666 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (2 < 𝑃𝑃 # 2))
8576, 84mpbird 167 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 < 𝑃)
86 modqid 10441 . . . . . . 7 (((2 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ 2 ∧ 2 < 𝑃)) → (2 mod 𝑃) = 2)
8767, 69, 71, 85, 86syl22anc 1250 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (2 mod 𝑃) = 2)
8887eqeq2d 2208 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
89 df-2 9049 . . . . . . . 8 2 = (1 + 1)
9089oveq2i 5933 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − (1 + 1))
9149a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 1 ∈ ℂ)
9248, 91, 91pnpcan2d 8375 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − (1 + 1)) = ((𝐴↑((𝑃 − 1) / 2)) − 1))
9390, 92eqtrid 2241 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) = ((𝐴↑((𝑃 − 1) / 2)) − 1))
9493breq2d 4045 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
9565, 88, 943bitr3rd 219 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
9661, 95orbi12d 794 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)))
9759, 96mpbid 147 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
9854, 4zmodcld 10437 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℕ0)
99 elprg 3642 . . 3 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℕ0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} ↔ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)))
10098, 99syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} ↔ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)))
10197, 100mpbird 167 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  wne 2367  cdif 3154  {csn 3622  {cpr 3623   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197   # cap 8608   / cdiv 8699  cn 8990  2c2 9041  0cn0 9249  cz 9326  cuz 9601  cq 9693   mod cmo 10414  cexp 10630  cdvds 11952   gcd cgcd 12120  cprime 12275  ϕcphi 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379
This theorem is referenced by:  lgslem4  15244
  Copyright terms: Public domain W3C validator