![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpcxple2 | GIF version |
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
rpcxple2 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1001 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+) | |
2 | 1 | rpred 9726 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ) |
3 | simp1 999 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ+) | |
4 | 3 | relogcld 14760 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℝ) |
5 | 2, 4 | remulcld 8018 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐴)) ∈ ℝ) |
6 | simp2 1000 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ+) | |
7 | 6 | relogcld 14760 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (log‘𝐵) ∈ ℝ) |
8 | 2, 7 | remulcld 8018 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐵)) ∈ ℝ) |
9 | efle 14654 | . . 3 ⊢ (((𝐶 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐵)) ∈ ℝ) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵))))) | |
10 | 5, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵))))) |
11 | efle 14654 | . . . 4 ⊢ (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵)))) | |
12 | 4, 7, 11 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵)))) |
13 | 4, 7, 1 | lemul2d 9771 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)))) |
14 | 3 | reeflogd 14761 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (exp‘(log‘𝐴)) = 𝐴) |
15 | 6 | reeflogd 14761 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (exp‘(log‘𝐵)) = 𝐵) |
16 | 14, 15 | breq12d 4031 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → ((exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵)) ↔ 𝐴 ≤ 𝐵)) |
17 | 12, 13, 16 | 3bitr3rd 219 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)))) |
18 | 1 | rpcnd 9728 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ) |
19 | rpcxpef 14772 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) | |
20 | 3, 18, 19 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) |
21 | rpcxpef 14772 | . . . 4 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐵↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵)))) | |
22 | 6, 18, 21 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐵↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵)))) |
23 | 20, 22 | breq12d 4031 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → ((𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵))))) |
24 | 10, 17, 23 | 3bitr4d 220 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5896 ℂcc 7839 ℝcr 7840 · cmul 7846 ≤ cle 8023 ℝ+crp 9683 expce 11682 logclog 14734 ↑𝑐ccxp 14735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-pre-mulext 7959 ax-arch 7960 ax-caucvg 7961 ax-pre-suploc 7962 ax-addf 7963 ax-mulf 7964 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-of 6106 df-1st 6165 df-2nd 6166 df-recs 6330 df-irdg 6395 df-frec 6416 df-1o 6441 df-oadd 6445 df-er 6559 df-map 6676 df-pm 6677 df-en 6767 df-dom 6768 df-fin 6769 df-sup 7013 df-inf 7014 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-ap 8569 df-div 8660 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-n0 9207 df-z 9284 df-uz 9559 df-q 9650 df-rp 9684 df-xneg 9802 df-xadd 9803 df-ioo 9922 df-ico 9924 df-icc 9925 df-fz 10039 df-fzo 10173 df-seqfrec 10477 df-exp 10551 df-fac 10738 df-bc 10760 df-ihash 10788 df-shft 10856 df-cj 10883 df-re 10884 df-im 10885 df-rsqrt 11039 df-abs 11040 df-clim 11319 df-sumdc 11394 df-ef 11688 df-e 11689 df-rest 12746 df-topgen 12765 df-psmet 13856 df-xmet 13857 df-met 13858 df-bl 13859 df-mopn 13860 df-top 13955 df-topon 13968 df-bases 14000 df-ntr 14053 df-cn 14145 df-cnp 14146 df-tx 14210 df-cncf 14515 df-limced 14582 df-dvap 14583 df-relog 14736 df-rpcxp 14737 |
This theorem is referenced by: rpabscxpbnd 14816 |
Copyright terms: Public domain | W3C validator |