Proof of Theorem 4exdistr
| Step | Hyp | Ref
 | Expression | 
| 1 |   | anass 401 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | 
| 2 | 1 | exbii 1619 | 
. . . . . . 7
⊢
(∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑤(𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | 
| 3 |   | 19.42v 1921 | 
. . . . . . . 8
⊢
(∃𝑤(𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ ∃𝑤(𝜓 ∧ (𝜒 ∧ 𝜃)))) | 
| 4 |   | 19.42v 1921 | 
. . . . . . . . 9
⊢
(∃𝑤(𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜓 ∧ ∃𝑤(𝜒 ∧ 𝜃))) | 
| 5 | 4 | anbi2i 457 | 
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑤(𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ (𝜓 ∧ ∃𝑤(𝜒 ∧ 𝜃)))) | 
| 6 |   | 19.42v 1921 | 
. . . . . . . . . 10
⊢
(∃𝑤(𝜒 ∧ 𝜃) ↔ (𝜒 ∧ ∃𝑤𝜃)) | 
| 7 | 6 | anbi2i 457 | 
. . . . . . . . 9
⊢ ((𝜓 ∧ ∃𝑤(𝜒 ∧ 𝜃)) ↔ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) | 
| 8 | 7 | anbi2i 457 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜓 ∧ ∃𝑤(𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)))) | 
| 9 | 3, 5, 8 | 3bitri 206 | 
. . . . . . 7
⊢
(∃𝑤(𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)))) | 
| 10 | 2, 9 | bitri 184 | 
. . . . . 6
⊢
(∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)))) | 
| 11 | 10 | exbii 1619 | 
. . . . 5
⊢
(∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑧(𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)))) | 
| 12 |   | 19.42v 1921 | 
. . . . 5
⊢
(∃𝑧(𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) ↔ (𝜑 ∧ ∃𝑧(𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)))) | 
| 13 |   | 19.42v 1921 | 
. . . . . 6
⊢
(∃𝑧(𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)) ↔ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))) | 
| 14 | 13 | anbi2i 457 | 
. . . . 5
⊢ ((𝜑 ∧ ∃𝑧(𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) ↔ (𝜑 ∧ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | 
| 15 | 11, 12, 14 | 3bitri 206 | 
. . . 4
⊢
(∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | 
| 16 | 15 | exbii 1619 | 
. . 3
⊢
(∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑦(𝜑 ∧ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | 
| 17 |   | 19.42v 1921 | 
. . 3
⊢
(∃𝑦(𝜑 ∧ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | 
| 18 | 16, 17 | bitri 184 | 
. 2
⊢
(∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | 
| 19 | 18 | exbii 1619 | 
1
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) |