| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvalv | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalv | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | ax-17 1550 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvalh 1777 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nfcjust 2337 cdeqal1 2993 dfss4st 3410 zfpow 4226 tfisi 4642 acexmid 5955 tfrlem3-2d 6410 tfrlemi1 6430 tfrexlem 6432 tfr1onlemaccex 6446 tfrcllemaccex 6459 findcard 6999 fisseneq 7045 genprndl 7649 genprndu 7650 zfz1iso 11003 |
| Copyright terms: Public domain | W3C validator |