![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvalv | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalv | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1526 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | ax-17 1526 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvalh 1753 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: nfcjust 2307 cdeqal1 2953 dfss4st 3368 zfpow 4174 tfisi 4585 acexmid 5871 tfrlem3-2d 6310 tfrlemi1 6330 tfrexlem 6332 tfr1onlemaccex 6346 tfrcllemaccex 6359 findcard 6885 fisseneq 6928 genprndl 7517 genprndu 7518 zfz1iso 10814 |
Copyright terms: Public domain | W3C validator |