Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv GIF version

Theorem cbvalv 1889
 Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
cbvalv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvalv
StepHypRef Expression
1 ax-17 1506 . 2 (𝜑 → ∀𝑦𝜑)
2 ax-17 1506 . 2 (𝜓 → ∀𝑥𝜓)
3 cbvalv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvalh 1726 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104  ∀wal 1329 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514 This theorem depends on definitions:  df-bi 116  df-nf 1437 This theorem is referenced by:  nfcjust  2267  cdeqal1  2895  dfss4st  3304  zfpow  4094  tfisi  4496  acexmid  5766  tfrlem3-2d  6202  tfrlemi1  6222  tfrexlem  6224  tfr1onlemaccex  6238  tfrcllemaccex  6251  findcard  6775  fisseneq  6813  genprndl  7322  genprndu  7323  zfz1iso  10577
 Copyright terms: Public domain W3C validator