ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv GIF version

Theorem cbvalv 1932
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
cbvalv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvalv
StepHypRef Expression
1 ax-17 1540 . 2 (𝜑 → ∀𝑦𝜑)
2 ax-17 1540 . 2 (𝜓 → ∀𝑥𝜓)
3 cbvalv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvalh 1767 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475
This theorem is referenced by:  nfcjust  2327  cdeqal1  2980  dfss4st  3396  zfpow  4208  tfisi  4623  acexmid  5921  tfrlem3-2d  6370  tfrlemi1  6390  tfrexlem  6392  tfr1onlemaccex  6406  tfrcllemaccex  6419  findcard  6949  fisseneq  6995  genprndl  7588  genprndu  7589  zfz1iso  10933
  Copyright terms: Public domain W3C validator