ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv GIF version

Theorem cbvalv 1905
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
cbvalv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvalv
StepHypRef Expression
1 ax-17 1514 . 2 (𝜑 → ∀𝑦𝜑)
2 ax-17 1514 . 2 (𝜓 → ∀𝑥𝜓)
3 cbvalv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvalh 1741 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nfcjust  2296  cdeqal1  2942  dfss4st  3355  zfpow  4154  tfisi  4564  acexmid  5841  tfrlem3-2d  6280  tfrlemi1  6300  tfrexlem  6302  tfr1onlemaccex  6316  tfrcllemaccex  6329  findcard  6854  fisseneq  6897  genprndl  7462  genprndu  7463  zfz1iso  10754
  Copyright terms: Public domain W3C validator