ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alral GIF version

Theorem alral 2437
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
Assertion
Ref Expression
alral (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)

Proof of Theorem alral
StepHypRef Expression
1 ax-1 5 . . 3 (𝜑 → (𝑥𝐴𝜑))
21alimi 1399 . 2 (∀𝑥𝜑 → ∀𝑥(𝑥𝐴𝜑))
3 df-ral 2380 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3sylibr 133 1 (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1297  wcel 1448  wral 2375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-gen 1393
This theorem depends on definitions:  df-bi 116  df-ral 2380
This theorem is referenced by:  abnex  4306  find  4451  findset  12728
  Copyright terms: Public domain W3C validator