Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alral | GIF version |
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
Ref | Expression |
---|---|
alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
2 | 1 | alimi 1443 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
3 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-ral 2449 |
This theorem is referenced by: abnex 4425 find 4576 prodeq2w 11497 findset 13827 |
Copyright terms: Public domain | W3C validator |