| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > alral | GIF version | ||
| Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) | 
| Ref | Expression | 
|---|---|
| alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1 6 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | 1 | alimi 1469 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | 
| 3 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2167 ∀wral 2475 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 | 
| This theorem is referenced by: abnex 4482 find 4635 prodeq2w 11721 findset 15591 | 
| Copyright terms: Public domain | W3C validator |