Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alral | GIF version |
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
Ref | Expression |
---|---|
alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
2 | 1 | alimi 1453 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
3 | df-ral 2458 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | 2, 3 | sylibr 134 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 ∈ wcel 2146 ∀wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 |
This theorem depends on definitions: df-bi 117 df-ral 2458 |
This theorem is referenced by: abnex 4441 find 4592 prodeq2w 11532 findset 14266 |
Copyright terms: Public domain | W3C validator |