Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  findset GIF version

Theorem findset 13358
 Description: Bounded induction (principle of induction when 𝐴 is assumed to be a set) allowing a proof from basic constructive axioms. See find 4523 for a nonconstructive proof of the general case. See bdfind 13359 for a proof when 𝐴 is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
findset (𝐴𝑉 → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem findset
StepHypRef Expression
1 simpr1 988 . . 3 ((𝐴𝑉 ∧ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)) → 𝐴 ⊆ ω)
2 simp2 983 . . . . . 6 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → ∅ ∈ 𝐴)
3 df-ral 2422 . . . . . . . 8 (∀𝑥𝐴 suc 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴 → suc 𝑥𝐴))
4 alral 2482 . . . . . . . 8 (∀𝑥(𝑥𝐴 → suc 𝑥𝐴) → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
53, 4sylbi 120 . . . . . . 7 (∀𝑥𝐴 suc 𝑥𝐴 → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
653ad2ant3 1005 . . . . . 6 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
72, 6jca 304 . . . . 5 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)))
8 3anass 967 . . . . . 6 ((𝐴𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ↔ (𝐴𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))))
98biimpri 132 . . . . 5 ((𝐴𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))) → (𝐴𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)))
107, 9sylan2 284 . . . 4 ((𝐴𝑉 ∧ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)) → (𝐴𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)))
11 speano5 13357 . . . 4 ((𝐴𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
1210, 11syl 14 . . 3 ((𝐴𝑉 ∧ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)) → ω ⊆ 𝐴)
131, 12eqssd 3120 . 2 ((𝐴𝑉 ∧ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)) → 𝐴 = ω)
1413ex 114 1 (𝐴𝑉 → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963  ∀wal 1330   = wceq 1332   ∈ wcel 1481  ∀wral 2417   ⊆ wss 3077  ∅c0 3369  suc csuc 4297  ωcom 4514 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-nul 4063  ax-pr 4141  ax-un 4365  ax-bd0 13226  ax-bdan 13228  ax-bdor 13229  ax-bdex 13232  ax-bdeq 13233  ax-bdel 13234  ax-bdsb 13235  ax-bdsep 13297  ax-infvn 13354 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2692  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-sn 3539  df-pr 3540  df-uni 3746  df-int 3781  df-suc 4303  df-iom 4515  df-bdc 13254  df-bj-ind 13340 This theorem is referenced by:  bdfind  13359
 Copyright terms: Public domain W3C validator