ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  find GIF version

Theorem find 4646
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that 𝐴 is a set of natural numbers, zero belongs to 𝐴, and given any member of 𝐴 the member's successor also belongs to 𝐴. The conclusion is that every natural number is in 𝐴. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
find.1 (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
Assertion
Ref Expression
find 𝐴 = ω
Distinct variable group:   𝑥,𝐴

Proof of Theorem find
StepHypRef Expression
1 find.1 . . 3 (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
21simp1i 1008 . 2 𝐴 ⊆ ω
3 3simpc 998 . . . . 5 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
41, 3ax-mp 5 . . . 4 (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
5 df-ral 2488 . . . . . 6 (∀𝑥𝐴 suc 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴 → suc 𝑥𝐴))
6 alral 2550 . . . . . 6 (∀𝑥(𝑥𝐴 → suc 𝑥𝐴) → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
75, 6sylbi 121 . . . . 5 (∀𝑥𝐴 suc 𝑥𝐴 → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
87anim2i 342 . . . 4 ((∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)))
94, 8ax-mp 5 . . 3 (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
10 peano5 4645 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
119, 10ax-mp 5 . 2 ω ⊆ 𝐴
122, 11eqssi 3208 1 𝐴 = ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wal 1370   = wceq 1372  wcel 2175  wral 2483  wss 3165  c0 3459  suc csuc 4411  ωcom 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4417  df-iom 4638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator